Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 45 | 201-224
Tytuł artykułu

On the variety of Heyting algebras with successor generated by all finite chains

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contrary to the variety of Heyting algebras, finite Heyting algebras with successor only generate a proper subvariety of that of all Heyting algebras with successor. In particular, all finite chains generate a proper subvariety, SLH omega, of the latter. There is a categorical duality between Heyting algebras with suc- cessor and certain Priestley spaces. Let X be the Heyting space associated by this duality to the Heyting algebra with successor H. If there is an ordinal k and a filtration on X such that X = Union lambda less-than or equal to k X lambda, the height of X is the minimun ordinal ksi less-than or equal to k such that Xc ksi = empty. In this case, we also say that H has height . This filtration allows us to write the space X as a disjoint union of antichains. We may think that these antichains define levels on this space. We study the way of characterize subalgebras and homomorphic images in finite Heyting algebras with successor by means of their Priestley spaces. We also depict the spaces associated to the free algebras in various subcategories of SLH omega.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
201-224
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • Departamento de Matemaatica, Facultad de Ciencias Exactas, UNLP. Casilla de correos 172, La Plata (1900) Argentina., jlc@mate.unlp.edu.ar
Bibliografia
  • [1] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press,Columbia, Miss. (1974).
  • [2] H. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer Verlag,New York (1981).
  • [3] X. Caicedo and R. Cignoli, An algebraic approach to intuitionistic connectives, Journal of Symbolic Logic 66, No.4 (2001), pp. 1620–1636.
  • [4] J. L. Castiglioni, M. Sagastume and H. J. San Martin, On frontal Heyting algebras,Reports on Mathematical Logic 45 (2010), pp. 201–224..
  • [5] S. Celani and R. Jansana, Bounded distributive lattices with strict implication, Mathematical Logic Quarterly 51 (2005), pp. 219–246.
  • [6] R. Cignoli, S. Lafalce and A. Petrovich, Remarks on Priestley duality for distributive lattices, Orden, 8 (1991), pp. 183–197.
  • [7] L. Esakia, The modalized Heyting calculus: a conservative modal extension of the Intuitionistic Logic, Journal of Applied Non-Classical Logics 16, No.3-4 (2006), pp.349–366.
  • [8] A. Horn, Logic with truth values in a linearly ordered Heyting algebra, J. Symbolic Logic 34 (1969), pp. 395–405.
  • [9] P. Jonstone, Stone Spaces, Cambridge University Press, 1982.
  • [10] A. V. Kusnetzov, On the Propositional Calculus of Intuitionistic Provability, Soviet Math. Dokl. 32 (1985), pp. 18–21.
  • [11] G. Martinez and H. Priestley, On Priestley Spaces of Lattice-Ordered Algebraic Structures, Orden 15 (1998), pp. 297–323.
  • [12] A. Monteiro, Sur les algebres de Heyting sym´etriques, Portugal. Math. 39 (1980).
  • [13] P. Morandi, Dualities in Lattice Theory, Mathematical Notes http://sierra.nmsu.edu/morandi/.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0027-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.