Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 7, No. 1 | 150-155
Tytuł artykułu

Modelling of brittle damage nucleation by means of

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Modelowanie nukleacji uszkodzeń kruchych przy pomocy automatów komórkowych
Konferencja
14th KomPlasTech Conference, Zakopane, January 14-17, 2007
Języki publikacji
EN
Abstrakty
EN
The main goal of the paper is to motivate damage nucleation in metals, subjected to creep conditions, on the level of material structure. In classical approach of mechanics it is achieved by introducing a scalar (or tensorial) parameter called damage variable and postulating its phenomenological evolution equation. Such an approach has been successfully used in analysis of structures under different loading circumstances, giving rise to the formation of special branch of mechanics “Continuum Damage Mechanics” (CDM). This approach reflects neither physical process that is underlying macroscopically observed phenomena, nor material structure. On the other hand, in metallurgy, the process of brittle damage formation is well recognized and described. In brief, it consists of microcraking and voids formation initiating in the triple-points and developing along grain boundaries. Therefore, it is essential to associate any description of damage formation with modelling of material structures. In the paper, it was achieved by associating deformation process with changing states of CA cells. To model time dependent behaviour of representative volume element (RVA) of material a 3D cellular automaton was developed. The process of damage formation consists of two steps in each time increment. In the first one, the tension (or compression) of RVE over an increment of deformation mesh was supposed, and then projected onto cellular automaton cells. In the second step the damage formation is controlled by the rules of an automaton. These probabilistic rules change the state of mass cell to empty for specific combination of neighbouring cells, provided this cell corresponds to grain boundary. Above procedure allows to forms microvoids or microcracs. The main rule governing cellular automaton is the mass conservation law, which enforced the number of empty cells in RVE. As the outcome from CA the damage variable is calculated as a percentage of entire damage of RVE. The entire damage is assumed to happen when the voids form a surface spanning two opposite borders of element. The procedures developed in the paper are used to modify standard FE programs through incorporating results of CA-based microstructural analysis according to the CAFE methodology. For each Gauss point of finite element the CA is running and values of state variables are exchanged between FE and CA. Strains obtained from FE are used to calculate deformation of the borders of RVE. In turn, the damage variable calculated from CA modifies the value of stress used in FE solution. In such a way multiscale description of phenomenon is proposed to obtain solution of engineering problems with sound physical background. As an example, a plate under uniform pressure working in creep condition is analysed using HKS Abaqus. Results obtained are compared with numerical solution of CDM.
PL
Zaproponowano opis nukleacji uszkodzeń dla metali pracujących w warunkach pełzania na poziomie mikrostruktury. Opisując to zjawisko w klasycznym podejściu do mechaniki wprowadza się skalarny (lub tensorowy) parametr nazywany uszkodzeniem i postuluje fenomenologiczne prawo jego rozwoju. Takie podejście jest z powodzeniem używane w analizie konstrukcji w różnych warunkach obciążenia tworząc specjalną gałąź mechaniki zwaną kontynualną mechaniką uszkodzeń. Pomimo rozwiązania szeregu ważnych technicznych problemów, takich jak oszacowanie czasu do pojawienia się pierwszego makroskopowego uszkodzenia a także dalszego rozwoju procesu pękania, podejście to nie odzwierciedla ani procesu fizycznego leżącego u podstaw makroskopowo obserwowanych zjawisk, ani struktury materiału. W niniejszej pracy proponuje się podejście wieloskalowe poprzez połączenie rozwiązania numerycznego na poziomie makroskopowym z opisem zachowania się struktury materiału na poziomie mikro przy pomocy automatów komórkowych. Otrzymane rozwiązania porównane
Wydawca

Rocznik
Strony
150-155
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
Bibliografia
  • Adamatzky, A. L,  1996, Voronoi-Like Partition of Lattice in Cellular Automata, Mathl. Comput. Modelling, 23, 51-66.
  • Ashby, M. F., Jones, D. R. H., 1980, Engineering Materials, An Introduction to their Properties and Applications, Perga-mon Press, Oxford.
  • Bodnar, A., Chrzanowski, M., 2002, On creep rupture of rectangular plates, ZAMM, 82, 201-205.
  • Hans, C., 1961, The Role of Grain Boundaries in Creep and Stress Rupture, Mechanical Behavior of Materials at Elevated Temperatures, ed. J.E. Dorn, McGraw-Hill Book Company, New York Toronto London, 218-269.
  • Gawąd, J., Macioł P., Pietrzyk M., 2005, Multiscale Modelling of Microstructure and Macroscopic Properties in Thixoforming Process Using Cellular Automation Technique, Archives of Metallurgy and Materials, 50, 549-562.
  • Janson, J., Hult, J., 1977, Fracture mechanics and damage mechanics - A combined approach, J. de Mec. Appliquee, l, 69-84.
  • Kachanov, L.M., 1958, On creep rupture time, Izv. ANSSSR OTN, 8,26-31,(in Russian)
  • Krajcinovic, D., 1996, Damage Mechanics, North Holland Series in Appl. Math. and Mech., Elsevier, Amsterdam.
  • Kułakowski, K., 2000, Cellular Automata, OEN AGH, Kraków (in Polish)
  • Lemaitre, J., 1992, A Course on Damage Mechanics, Springer-Verlag, Berlin Heidelberg New York.
  • Matic, P., Geltmacher, A.B., 2001, A cellular automaton-based technique for modeling mesoscale damage evolution, Comp. Mat. Sci., 20, 120-141.
  • NIST, 2001, Annual Report, Metallurgy Division of MSEL, National Institute of Standards and Technology, http://www. metallurgy.nist.gov/mechanical_properties.
  • Shterenlikht, A, Howard, I.C., 2004, Cellular Automata Finite Element (CAFE) Modelling of Transitional Ductile-Brirtle Fracture in Steel, Proc. of the 15th European Conference of Fracture, Stockholm.
  • Skrzypek, J., Ganczarski, A., 1999, Modeling of Material Damage and Failure of Structures, Springer-Verlag, Berlin Heidelberg New York.
  • Walczak, J., Sieniawski, J., 1983, On the analysis of creep stability and rupture, Computers and Structures, 17, 783-792.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0013-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.