Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 12, nr 2 | 165-171
Tytuł artykułu

Mathematical Model for Thermal Shock Problem of a Generalized Thermoelastic Layered Composite Material with Variable Thermal Conductivity

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One-dimensional generalized thermoelastic mathematical model with variable thermal conductivity for heat conduction problem is constructed for a layered thin plate. The basic equations are transformed by Laplace transform and solved by a direct method. The solution was applied to a plate of sandwich structure, which is thermally shocked, and traction free in the outer sides. The inverses of Laplace transforms are obtained numerically. The temperature, the stress and the displacement distributions are represented graphically.
Wydawca

Rocznik
Strony
165-171
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] H. Lourd and Y. Shulman, A generalized dynamical theory of thermoelasticity. J. Mech. Phys. and Solids 15, 299-309 (1967).
  • [2] R. Dhaliwal and H. Sherief, Generalized thermoelasticity for anisotropic media, Quart. Appl. Math. 38, 1-8 (1980).
  • [3] A. Roberts, On the steady motion of a line load over a coupled thermoelastic half-space subsonic case, Quart. J.Mech. Appl. Math. 25, 497-511 (1972).
  • [4] F. Ziegler, Ebene Wellenausbreitung im Halbraum bei Zufallserregung Spannungs-und Temperaturfeld, Acta Mechanica 2, 307-327 (1966).
  • [5] Y. Yang and C. Chen, Thermoelastic transient response of an infinitely long annular cylinder composed of two different materials, Int. J. Eng. Sci. 24, 569-581 (1986).
  • [6] I. Müller, The coldness, a universal function in thermoelastic solids, Arch. Rat. Mech. Anal. 41, 319 (1971).
  • [7] A. Green and N. Laws, On the entropy production inequality,Arch. Rat. Anal. 54, 7 (1972).
  • [8] A Green and K. Lindsay, Thermoelasticity, J. Elast. 2, 1 (1972).
  • [9] E. Şuhubi, Thermoelastic solids, in: A. C. Eringen (ed),Cont. Phys II, Academic Press, New York, Chapter 2 (1987).
  • [10] S. Erbay and E. Şuhubi, Longitudinal wave propagation in a generalized thermo-elastic cylinder, J. Therm. Stresses90, 279 (1986).
  • [11] J. Ignaczak, A strong discontinuity wave in thermoelastic with relaxation times, J. Thermal Stresses 8, 25 (1985).
  • [12] J. Ignaczak, Decomposition theorem for thermoelasticity with finite wave speeds, J. Thermal Stresses 1, 41 (1978).
  • [13] D. P. H. Hasselman and R. A. Heller, Thermal Stresses in Sever Environments, Plenum Press, New York (1980).
  • [14] N. M. El-Maghraby and H. M. Youssef, State Space Approach to Generalized Thermoelastic Problem with Thermo-Mechanical Shock, J. Applied Mathematics and Computation,156, Issue 2, P. 577-586 (2004).
  • [15] G. Hanig and U. Hirdes, A method for the numerical inversion of Laplace transform, J. Comp. Appl. Math., 10, 113-132 (1984).
  • [16] A. A. El-Bary and H. M. Youssef, Thermal Shock Problem for one dimension generalized thermoelastic layered composite material, accepted for publication in Math. and Comp. App. (2005)
  • [17] S. Minagawa, Nonlinear-eigenvalue problem for heat conduction in a one-dimensional coupled thermoelasticlayered composite, Int. J. Eng. Sci. 25, 1337-1342 (1987).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0013-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.