Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 12, nr 2 | 101-108
Tytuł artykułu

Numerical Solution of Electro-magneto-thermo-mechanical Shock Problem

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A conducting half-space, permeated by an initial magnetic field governed by the generalized equations of thermoelasticity is considered. The bounding plane is acted upon by a combination of thermal and mechanical shock. The formulation is applied to both generalizations, Lord-Shulman theory and the Green-Lindsay theory, as well as to the coupled theory. Laplace transform techniques together with the method of potentials are used. The inversion of the Laplace is carried out using a numerical approach. Numerical results for the temperature, the stress and the induced magnetic and electric field distributions are obtained and illustrated graphically for a particular case. Comparisons are made with the results obtained in the case of the absence of the magnetic field.
Wydawca

Rocznik
Strony
101-108
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Department of Basic and Applied Science Arab Academy for Science and Technology P.O. Box 1029 Alexandria, Egypt, aaelbary@aast.edu
Bibliografia
  • [1] J. H. Duhamel, Second memoir, sur les phenomenes ther-momechanique, J. de L' Ecole Polytechniąue 15 (1837).
  • [2] M. Biot, Thermoelasticity andirreversible thermodynamics,J.Appl. Phys. 27(1956).
  • [3] C. Cattaneo, Sullacandizione del calore, Atti. Sem. Mat.Fis. Univ. Modena3 (1948).
  • [4] C. Truesdell and R. G. Muncaster, Fundamental of Maxwell's kinetic theory of a simple monatomic gaś, Acad.Press, New York (1980).
  • [5] D. E. Glass and B. Yick, Hyperbolic heat conduction with surface radiation, Int. J. Heat Mass Transfer 28, 1823(1985).
  • [6] D. D. Joseph and L. Preziosi, Heat waves, Rev. Modern Phys. 61,41 (1989).
  • [7] D. D. Joseph and L. Preziosi, Addendum to the paper: heat waves, Rev. Modern Phys. 62, 375 (1989).
  • [8] W. Dreyer and H. Struchtrup, Heat pulse experiments revisited, Count. Mech. Thermodyn. 5, 3 (1993).
  • [9] P. Puri and P. K. Kythe, Non-classical thermal effects in Stoke's secondproblem, ActaMech. 112, l (1995).
  • [10] D. S. Chandrasekharaiah, Hyperbolic thermoelasticity.A review of recent literaturę, Appl. Mech. Rev. 51, 705(1998).
  • [11] H. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, Mech. Phys. Solid. 15, 299 (1967).
  • [12] I. Muller, The coldness, a universal function in thermoelastic solids, Arch. Rat. Mech. Anal. 41, 319 (1971).
  • [13] A. Green and N. Laws, On the entropy production ineauality, Arch. Rat. Anal. 54, 7 (1972).
  • [14] A. Green and K. Lindsay, Thermoelasticity, J. Elast. 2, 7 (1972).
  • [15] E. §uhubi, Thermoelastic solids, in: A. C. Eringen (ED),Cont. Phys. II, Academic Press, New York (1975) Ch. 2.
  • [16] M. Ezzat, Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions, Int. J. Engng.Sci. 33, 2011(1995).
  • [17] A. Nayfeh and S. Nemat-Nasser, Electromagneto-Thermo-elastic Pianę Waves in Solids with Thermal Relaxation, J.Appl. Mech. Series E 39, 108 (1972).
  • [18] H. Sherief and M. Ezzat, A thermal-shockproblem in mag-neto-thermoelasticity with thermal relaxation, Int. J. Solids and Structures 33, 4449 (1996).
  • [19] M. Ezzat, Generation of generalized magneto-thermoelasticity waves by thermal shock in a perfectly conducting half-space, J. Thermal Stresses 20, 617 (1997).
  • [20] H. Sherief, A thermal-mechanical shock problem for thermoelasticity with two relaxation time, Int. J. Engng. Sci. 32,313 (1994).
  • [21] M. Ezzat and A. El-Karamany, Magnetothermoelasticity with two relaxation times in conducting medium wilh variable electrical and thermal conductnńty, J. App. Math and Computaions 142, 449 (2003).
  • [22] M. Ezzat and A. El-Karamani, The uniąueness and recip-rocity theorems for generalized thermoviscoelasticity for anisotropic media, J. Thermal Stresses 25, 507 (2002).
  • [23] G. Honig and Hirdes, A Methodfor the Numerical lnversion of the Łapiące Transform, J. Comp. Appl. Math. 10, 113(1984).
  • [24] B. A. Boley and J. H. Weiner, Theory of thermal stresses, Wiley, New York, 1960.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0013-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.