Warianty tytułu
Języki publikacji
Abstrakty
Density functional theory (DFT) calculations on a double hydrogen-bonded dimer of (p-methoxyphenyl)thiosemicarbazide were carried out at B3LYP/6-31G* level. The optimized geometry of the dimer closely resembles that in the crystal. The calculated results show that the total energy of the dimer is much lower than the sum of energies of the two monomers, and the average strength of the double hydrogen bond is about 21.92 kJ/mol. In order to probe the origin of the interactions in the dimer, natural bond orbital analyses have been performed. The thermodynamic properties of the title compound at different temperatures have also been calculated on the basis of vibrational analyses and the change of Gibbs free energy for dimerization of the twomonomers.GT = –18.40 kJ/mol at 298.15 K and 0.1MPa, which implies the spontaneous process of the dimer formation. The correlation graphs of Sm 0, Hm 0 and temperatures for the dimer are depicted.
Czasopismo
Rocznik
Tom
Strony
2031-2039
Opis fizyczny
Bibliogr. 23 poz., rys.
Bibliografia
- 1. Jefrrey G. A. and Saenge W., Hydrogen Bonding in BiologicalStructures, Springer-Verlag: Berlin, 1991.
- 2. Philp D. and Stoddart J.R, Angew. Chem. Int. Ed. EngL, 35, 1154 (1996).
- 3. Sherrington D.C. and Taskinen K.A., Chem. Soc. Rev., 30, 7623 (2001).
- 4. Legon A.C., Chem. Soc. Rev., 19, 197 (1990).
- 5. Steinke J.H.G. and Sherrington D.C., TrAC, Trends Anal. Chem., 18, 159 (1999).
- 6. Scheiner S., Reviews in Computational Chemistry, VCH: New York, 1991.
- 7. Freccero M., Di Yalentin C. and Sarzi-Amade M., J. Am. Chem. Soc., 125, 3544 (2003).
- 8. Labanowski J.K. and Andzelm J., Density Functional Methods in Chemistry, Springer Yerlag: New York, 1991.
- 9. Dickson R.M. and Becke A.D., J. Chem. Phys., 99, 3898 (1993).
- 10. Oliphant N. and Bartlett R.J., J. Chem. Phys., 100, 6550 (1994).
- 11. Guo H., Sirois S., Proynov E.I. and Salaub D.R., In Theoretical Treatment ofHydrogen Bonding; Hadzy D., Ed.; Wiley: New York, 1997.
- 12. Jian F.F., Zhao P.S., Yu Q., Wang Q.X. and Jiao K., J. Phys. Chem. A., 108, 5258 (2004).
- 13. Zhao P.S., Jian F.F., Xiao H.L. and Sun P.P., Polish J. Chem., 78, 1935 (2004).
- 14. Jian F.F., Zhao P.S. and Wang Q.X., ChineseJ. Struct. Chem., 24, 184 (2005).
- 15. Jian F.F., Zhao P.S. and Hou Y.X., ChineseJ. Struct. Chem., 23, 1256 (2004).
- 16. Peng C., Ayala P.Y, Schlegel H.B. and Frisch M.J., J. Comput. Chem., 17, 49 (1996).
- 17. Reed A.E., Robert B. and Weinhold F., J. Chem. Phys., 83, 735 (1985).
- 18. Boys S.F. and Bemardi F., Mol Phys., 19, 553 (1970).
- 19. Johnson A., Kollman P. and Rothenberg S., Theor. Chem. Acta, 29, 167 (1973).
- 20. Chalasinski G. and Szczesniak M.M., Mol Phys., 63, 205 (1988).
- 21. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven Jr.,T., Kudin K.N., Burant J.C., Millam J.M., lyengar S.S., Tomasi J., Barone V, Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y, Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E.,Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P. Y, Morokuma K., Voth G.A., Salvador P, Dannenberg J. J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V, Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz R, Komaromi L, Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gili P.M.W., Johnson B., Chen W.,Wong M.W., Gonzalez C. and Pople J.A., Gaussian, Inc., Wallingford CT, 2004.
- 22. Xiao J.J., Zhang J., Yang D. and Xiao H.M., Acta Chim. Sinica, 60, 2110 (2002).
- 23. Philp D. and Stoddart J.F., Angew. Chem., Int. Ed. EngL, 35, 1155 (1996).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0005-0042