Warianty tytułu
Partitional and hierarchical data clustering methods
Języki publikacji
Abstrakty
W artykule przedstawiono najważniejsze podziałowe oraz hierarchiczne algorytmy grupowania danych. Wśród algorytmów podziałowych omówiono algorytmy oparte na prototypach punktowych oraz liniowych. Przedstawiono algorytmy hierarchiczne dla różnych miar podobieństwa oraz omówiono skrótowo kla-steryzację neuronową wykorzystującą sieć Kohonena.
In this paper the most important partitional and hierarchical data clustering algorithms arę described. Among partitional algorithms those based on point and linear prototypes arę discussed. In hierarchical algorithms different similarity measures arę described. Also, neural network clustering based on Kohonen network is described.
Czasopismo
Rocznik
Tom
Strony
157-170
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16, 44-101 Gliwice, Polska, delta@ivp.iinf.gliwice.pl
Bibliografia
- 1. Bezdek J. C.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York 1982.
- 2. Bezdek J. C., et al: Convergence theory for fuzzy c-means: counterexamples and repairs. IEEE Trans. SMC, V.17, No5, 873-877,1987.
- 3. Bezdek J. C: Some new indexes for cluster validity. IEEE Trans. SMC, V. 28, No3,1998.
- 4. Czogała, J. Łęski: Fuzzy and neuro-fuzzy intelligent systems. Physica-Verlag, Heidelberg 2000.
- 5. Duda R., Hart P.: Pattern classification and scene analysis. John Wiley&Sons , New York 1973.
- 6. Gustafson D., Kessel W.: Fuzzy clustering with a fuzzy covariance matrix. Proc. IEEE CDC, San Diego, 761-766,1979.
- 7. Jain A., Dubes R. C.: Algorithms for clustering data. Prentice-Hall, NJ 1988.
- 8. Krishnapuram R., et al.: Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. Part I. IEEE Trans. Fuzzy Systems, V. 3, No 1,29-43,1995.
- 9. Krishnapuram R., et al.: Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. Part II. IEEE Trans. Fuzzy Systems, V. 3, No 1,44-60,1995.
- 10. Krishnapuram R., Keller J.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Systems, V 1, No 2,98-110,1993.
- 11. Ng R., Han J.: Very large databases. Proc. VLDB, Berkeley, 144-155,1994.
- 12. Zhang T. et al.: An efficient data clustering method for very large databases. Sigmod, V. 25, No 2, 103-114, 1996.
- 13. Żurada J. et al.: Sztuczne sieci neuronowe. PWN, Warszawa 1997.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ3-0003-0088