Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 79 / nr 8 | 1251-1263
Tytuł artykułu

Muliwavelength Spectrophotometric Determination of Protolytic Constans of 4-(2-Pyridylazo)resorcinol (PAR) in Binary Dioxane + Water Mixtures

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acid-base properties of 4-(2-pyridylazo)resorcinol (PAR) in 1,4-dioxane (DX)-water binary mixture were investigated using a multiwavelength spectrophotometric method. The protolytic equilibrium constants, spectral profiles, concentration diagrams and also the number of components have been calculated from the fitting of the pH-absorbance data with appropriate mass balance equations by an established factor analysis model. The binary mixture of water-DX is a good system to study changing in the donating ability and permittivity of mixed solvent components in comparison to each other, considering the fact that variation in the permittivity from pure water to pure DX is 76 units. A linear relationship is observed between pKa's of the PAR molecule and the mole fraction of DX in different solvent mixtures. A glass electrode calibration procedure based on a four-parameter equation aided Gran's method was used to obtain pH readings based on the concentration scale (pcH). It has been observed that there is an inverse relationship between second and third protolytic constants and mole fraction of DX. The effect of the solvent on the protolytic constants was discussed.
Wydawca

Rocznik
Strony
1251-1263
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology, Tehran, Iran
autor
  • Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology, Tehran, Iran
autor
  • Chemistry Department, Faculty of Sciences, Razi University, Kermanshah, Iran
autor
  • Department of Chemistry and Biosciences, Chalmers University of Technology, Göteborg, Sweden
Bibliografia
  • 1.Zhao Y.H., Yuan L.-H. and Wang L.S., Bull. Environ. Contam. Toxicol., 57, 242 (1996).
  • 2.Rochester H., Acidity Functions, Academic Press: New York, 1971.
  • 3.Hammet L.P., Physical Organic Chemistry, McGraw-Hill: New York, 1940.
  • 4.Avdeef A. and Tam K..Y., J. Pharm. Biomed. Ana!., 20, 631 (1999).
  • 5.Kubista M., Sjoback R. and Albinsson B., Anal. Chem., 65, 994 (1993).
  • 6.Tam K.Y., Hadley M. and Paterson W„ Talanta, 49, 539 (1999).
  • 7.de Juan A., Maeder M., Martinez M. and Tauler R,,Anal. Chim. Acta, 442, 337 (2001).
  • 8.Ghasemi J., Niazi A., Kubista M. and Elbcrgali A., Anal. Chim. Acta, 455, 335 (2002).
  • 9.Hendriksen B.A., Sunchez-Flix M.V. and Tam K.Y., Spec. Lett., 35, 9 (2002).
  • 10.Lawton W.H. and Sylvcstrc E.A., Technometrics, 13, 617 (1971).
  • 11.Maeder M., Anal. Chem., 59, 527 (1987).
  • 12.Keller H.R. and Massart D.L., Chemometr. Int. Lab. Sys., 12, 209 (1992).
  • 13.Cuesta Sanchez F., Toft J., van den Bogacrt B. and Massart D.L., Anal. Chem., 68, 79 (1996).
  • 14.Cuesta Sanchez F., Rutan S.C., Gil Garica M.D. and Massart D.L., Chemometr. Int. Lab. Sys., 36, 153 (1997).
  • 15.Ghascmi J., Ahmadi Sh., Kubista M. and Forootan A., J. Chem. Eng. Data, 48, 1178 (2003).
  • 16.Faber K. and Kowalski B., Anal Chim. Ada, 337, 57 (1997).
  • 17.Grung B. and Kvalheim O.M., Chemometr. Int. Lab. Sys., 22, 115 (1994).
  • 18.Faber N.M., Buydens L.M.C. and Kateman G., Anal. Chim. Acta, 296,1 (1994).
  • 19.Malinowski E.R., Factor Analysis in Chemistry, Wiley: New York, 1991.
  • 20.Gemperline P.J., Anal. Chem., 58, 2656 (1986).
  • 21.Seber G.A.F. and Wild C.J., Nonlinear Regression, Wiley: New York, 1989.
  • 22.Sweeton F.H., Mesmer R.E. and Baes C.F., J. Solution Chem., 3, 191 (1974).
  • 23.Woolley E.M., Donald G.Ii. and Loren G.H., Phys. Chem., 74, 3908 (1970).
  • 24.Roses M„ Rdfols C. and Bosch E., Anal. Chem., 65, 2294 (1993).
  • 25.Rossotti F.J.C. and Rossotti H.,.J. Chem. Edu., 42, 375 (1965).
  • 26.Elbergali A., Nygren J. and Kubista M., Anal. Chim. Acta, 379, 143 (1999).
  • 27.Kelckova Z., LangovaM. and Havel I., Collect. Czech. Chem. Commun., 43, 3163 (1978).
  • 28.Russcva E., Kuban V. and Sommer L., Collect. Czech. Chem. Commun., 44, 374 (1979).
  • 29.Leaist D.G., MacEwan K., Stefan A. and Zamari M., J. Chem. Eng. Data, 45, 815 (2000).
  • 30.Guang Y., Tabata W.M. and Takamuku T., J. Mol. Liq., 94, 273 (2001).
  • 31.Takamuku T., Yamaguchi A., Tabata A.M., Nishi A.N., Yoshida B.K., Wakita H. and Yamaguchi T., J. Mol. Liq., 83, 163 (1999).
  • 32.Takamuku T., Yamaguchi A., Matsuo D., Tabata M., Yamaguchi T.O., Otomo T. and Adachi T.,Phys. Chem. B, 105, 10101 (2001).
  • 33.Geerlings J.D., Cyril Varma A.G.O. and van Hemert M.C., Phys. Chem. B, 104, 56 (2000).
  • 34.Marcus Y. and Migron Y., Phys. Chem., 95, 400 (1991).
  • 35.Gutmann V., Coordination Chemistry in Nonaqueous Solutions, Springer: New York, 1960.
  • 36.Almasifar D., Forghaniha F., Khojasteh Z., Ghasemi J., Sharghi H. and Shamsipur M., J. Chem. Eng. Data, 42, 1212(1997).
  • 37.Shamsipur M., Ghascmi J., Tamaddon F. and Sharghi H., Talanta, 40, 697 (1992).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ3-0002-0137
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.