Warianty tytułu
Języki publikacji
Abstrakty
The temperature programmed desorption (TPD) of triethylamine from alumina and two alumina-supported palladium catalysts of different metal loadings (0.3 and 2.77 wt.% Pd) confirmed the presence of strong Lewis acid sites in the samples subjected to high temperature reduction at 600_C. With increasing temperature during thermodesorption, triethylamine adsorbed on Lewis acid sites of alumina undergoes transformation, leading to desorption of several products, among which hydrogen, ethylene and acetonitrile predominate. However, introduction of increasing amounts of palladium to alumina makes the acidity probing difficult, because a considerable part of adsorbed triethylamine is decomposed on metal sites. Temperature programmed oxidation (TPO) shows that the organic coke left after TPD of triethylamine is associated with acid sites of alumina, not with palladium sites. Another observation that pure alumina and 0.3 wt.% Pd/Al2O3 retained larger amounts of coke than the 2.77 wt.% Pd/Al2O3 catalyst reveals a beneficial role of palladium in desorbing organic material in the course of TPD runs.
Czasopismo
Rocznik
Tom
Strony
757-765
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, PL-01224 Warszawa, Poland
autor
- Department of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, PL-00664, Warszawa, Poland
- Industrial Chemistry Research Institute, ul. Rydygiera 8, PL-01793 Warszawa, Poland
autor
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, PL-01224 Warszawa, Poland
- Department of Mathematics and Natural Sciences, Cardinal Stefan Wyszyñski University, ul. Dewajtis 5, PL-01815 Warszawa, Poland
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, PL-01224 Warszawa, Poland
Bibliografia
- 1. Kijeński J. and Baiker A., Catal. Today, 5, 1 (1989).
- 2. Amenomiya Y., Chenier J.H.B. and Cvetanovic R.J., J. Phys. Chem., 68, 52 (1964).
- 3. Gorte R.J., Catal. Lett., 62, 1 (1999).
- 4. Knozinger H., in “Handbook of Heterogeneous Catalysis“ (G. Ertl, H. Knozinger, and J. Weitkamp, Eds.), Vol. 2, Chap. 3.2.3.3„ p. 706, Wiley-VCH, Weinheim, 1997.
- 5. Skotak M. and Karpiński Z., Polish J. Chem., 75, 839 (2001).
- 6. Skotak M., Łomot D. and Karpiński Z., Appl. Catal. A: General, 229, 103 (2002).
- 7. Skotak M. and Karpiński Z., Chem. Eng. J., 90, 89 (2002).
- 8. Peri J.B., J. Phys. Chem., 69, 220 (1965).
- 9. Pines H. and Haag W., J. Am. Chem. Soc., 82, 497 (1960).
- 10. Knózinger H. and Ratnasamy P., Catal. Rev. Sci. Eng., 17, 31 (1978).
- 11. Mortem C. and Magnacca G., Catal. Today, 27, 497 (1996).
- 12. Busca G., Catal. Today, 41, 191 (1998).
- 13. Kishi K., Kikui F. and Ikeda S., Surf. Sci., 99, 405 (1980).
- 14. Inamura K., Inoue Y., Ikeda S. and Kishi K., Surf. Sci., 155, 173 (1985).
- 15. Nakayama T., Inamura K., Inoue Y., Ikeda S. and Kishi K, Surf. Sci., 179, 47 (1987).
- 16. Albert M.R., Appl. Surf. Sci., 158, 120 (2000).
- 17. Erley W., Xu R. and Hemminger J.C., Surf. Sci., 389, 272 (1997).
- 18. Chen J.J. and Winograd N., Surf. Sci., 326, 285 (1995).
- 19. Boitiaux J.P., Cosyns J. and Vasudevan S., in: Preparation of Catalysts III, Elsevier, Amsterdam, 1983, p 123.
- 20. Sokoli R., HobertH. and Schmuck I., J Catal., 121,153(1990).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0023-0133