Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | Vol. 11, no. 3/4 | 245-261
Tytuł artykułu

Path tracking by the end-effector of a redundant manipulator

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study deals with the problem of tracking a prescribed geometric path by the end-effector of a kinematically redundant manipulator at the control-loop level. During the robot motion, the control constraints resulting from the physical abilities of robot actuators are taken into account. The Lyapunov stability theory is used to derive the control scheme. The numerical simulation results carried out for a planar manipulator whose end-effector tracks a segment line in a two-dimensional work space, illustrate the trajectory performance of the proposed control scheme.
Wydawca

Rocznik
Strony
245-261
Opis fizyczny
Bibliogr 21 poz., rys., wzory
Twórcy
  • Institute of Organisation and Management, University of Zielona Góra, Podgórna 50, 65–246 Zielona Góra, Poland
Bibliografia
  • [1] J.E. Bobrow, S. Dubowsky and J.S. Gibson: Time-optimal control of robotic manipulators. Int. J. Robotics Res., 4(3), (1985), 3-17.
  • [2] Y. Chen and A.A. Desrochers: Structure of minimum-time control law for robotic manipulators with constrained paths. Proc. IEEE Conf. on Robotics and Automation, Scottsdale, USA, (1989), 971-976.
  • [3] P. Chiaccio and B. Siciliano: A closed-loop Jacobian transpose scheme for solving the inverse kinematics of nonredundant and redundant wrists. J. of Robotic Systems, 6(5), (1989), 601-630.
  • [4] M. Galicki: The planning of robotic optimal motions in the presence of obstacles.
  • [5] M. Galicki: The structure of time optimal controls for kinematically redundant manipulators with end-effector path constraints. Proc. IEEE Conf. on Robotics and Automation, Leuven, Belgium, (1998), 101-106.
  • [6] M. Galicki: Time-optimal controls of kinematically redundant manipulators with geometric constraints. IEEE Trans. Robotics Automat., 16(1), (2000), 89-93.
  • [7] M. Galicki and I. Pajak: Optimal motion of redundant manipulators with state equality constraints. Proc. IEEE Int. Symp. on Assembly and Task Planning, Porto, Portugal, (1999), 181-185.
  • [8] M. Krstic, I. Kanellakopoulos and P. Kokotovic: Nonlinear and adaptive control design. J. Wiley and Sons, New York, 1995.
  • [9] J.M. Mccarthy and J.E. Bobrow: The number of saturated actuators and constraint forces during time-optimal movement of a general robotic system. IEEE Trans. Robotics Automat., 8(3), (1992), 407-409.
  • [10] D. Nenchev: Tracking manipulator trajectories with ordinary singularities. A null space-based approach. Int. J. Robotics Res., 14(4), (1995), 399-404.
  • [11] M. Pajak and M. Galicki: The planning of suboptimal collision-free robotic motions. Proc. 1st Workshop on Robot Motion and Control, Kiekrz, Poland, (1999), 229-234.
  • [12] F. Pfeiffer and R. Johanni: A concept for manipulator trajectory planning. IEEE J. Robotics and Automation, RA-3(2), (1987), 115-123.
  • [13] L. Sciavicco and B. Siciliano: A solution algorithm to the inverse kinematic problem for redundant manipulators, IEEE J. of Robotics and Automation, 4(4), (1988), 403-410.
  • [14] Z. Shiller: On singular time-optimal control along specified paths. IEEE Trans. Robotics Automat., 10(4), (1994), 561-566.
  • [15] Z. Shiller and S. Dubowsky: Robust computation of path constrained time optimal motions. Proc. IEEE Conf. on Robotics and Automation, Cincinnati, USA, (1990), 144-149.
  • [16] Z. Shiller and H.H. Lu: Computation of path constrained time optimal motions with dynamic singularities. ASME J. Dynamic Syst., Measurement, and Control, 114(2), (1992), 34-40.
  • [17] B. Siciliano: A closed-loop inverse kinematic scheme for on-line joint-based robot control. Robotica, 8 (1990), 231-243.
  • [18] S.K. Singh and M. C. Leu: Manipulator motion planning in the presence of obstacles and dynamic constraints. Int. J. Robotics Res., 10(2), (1991), 177-187.
  • [19] M. Spong and M. Vidyasagar: Robot dynamics and control. New York, Wiley, 1989.
  • [20] K. Tchon: A normal form appraisal of the null space-based singular path tracking. Proc. 1st Workshop on Robot Motion and Control, Kiekrz, Poland, (1999), 263-271.
  • [21] W.A. Wolovich and H.A. Elliot: A computational technique for inverse kinematics. Proc. 23rd Conf. on Decision and Control, Las Vegas, (1984), 1359-1363.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW9-0007-1377
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.