Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | Vol. 10, no. 1/2 | 89-118
Tytuł artykułu

Mathematical and neural network modelling of a wastewater treatment plant

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A comparison of a few methodologies of building models useful in wastewater treatment plant maintenance is performed. One is mathematical modelling of the activated sludge process. It consists of modelling of the basic vessels: primary clarifiers, aerator basins and secondary clarifiers, linked and partially looped, as well as equations describing the physical and biochemical transformations going on in the vessels: sedimentation in the clarifiers and biological processes changing the influent wastewater chemical composition. The models' parameters were estimated in two steps. In the first step the active volumes of the vessels were estimated from the experiment performed in the plant. In the second step, parameters known from the literature were used as the initial guess and then calibrated to fit the observations taken during normal plant operation. Concerning other methodologies, results from the black box modelling of the performance of the plant with the neural network are given. The neural network and the time series models are also applied for prediction of the influent wastewater.
Wydawca

Rocznik
Strony
89-118
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wzory
Twórcy
autor
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01 447 Warszawa, Poland, bogdan@ibspan.waw.pl
  • Agricultural University, Institute of Building and Landscape Architecture, Dicksteina 3, 51-617 Wrocław
autor
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01 447 Warszawa, Poland, nahorski@ibspan.waw.pl
  • Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01 447 Warszawa, Poland, studzins@ibspan.waw.pl
autor
  • Wrocław Technical University, Institute of Environment Protection Engineering, Pl. Grunwaldzki 9, 50-377 Wrocław, szeteIa@iios.pwr.wroc.pl.
Bibliografia
  • [1] S. Aborhey and D. Williamson: State and parameter estimation of microbial growth processes. Automatica, 14 (1978), 493-498.
  • [2] T. Andersson and P. Pucar: Estimation of residence time in continuous How systems with dynamics. J. Proc. Contr., 5 (1995). 9-17.
  • [3] E. Ayesa, J. Florez, J. L. Garcia-Heras and L. Larrea: State and coefficient estimation for the activated sludge process using a modified Kalman filter algorithm. Water Science and Technology, 24 (1991), 235-247.
  • [4] N. Bhat and T. McAvoy: Use of neural nets for dynamic modelling and control of chemical process systems. Computer and Chemical Engineering, 14 (1990), 573-583.
  • [5] L. Bogdan, Z. Nahorski and J. Studziński: Estymacja objętości czynnych zbiorników przy zmiennych przepływach. Raport PWSD 7/96. IBS PAN, Warszawa, 1996, (in Polish).
  • [6] L. Bogdan, J. Łomotowski, Z. Nahorski, J. Studziński, and R. Szetela: Mathematical model and its calibration for Rzeszów wastewater treatment plant. Environment Protection Engineering, 24 (1998), 95-1 12.
  • [7] J. Buckheit and D. Donoho: WaveLab Version 0.700. Stanford University, 1995.
  • [8] A. Capodaglio, V. Novotny and L. Fortina: Modelling wastewater treatment plants through time series analysis. Environmetrics, 3 (1992), 99-120.
  • [9] J. Carstensen: Identification of wastewater processes. PhD Thesis. IMSOR, Technical University of Denmark, Lyngby, 1994.
  • [10] J. S. Cech, J. Chudoba and P. Grau: Determination of kinetic constants of activated sludge microorganisms. Water Science and Technology, 17 (1985), 259-272.
  • [11] D. Cuillard and S. Zhu: Control strategy for the activated sludge process under shock loading. Water Research, 26 (1992), 649-655.
  • [12] G. T. Daigger and R. E. Roper: The relationship between SVI and activated sludge characteristics. JWPCF, 57 (1995). 859.
  • [13] D. Dochain and G. Bastin: Adaptive identification and control algorithms for nonlinear bacterial growth system. Automatica, 20 (1984), 621-634.
  • [14] G. A. Ekama, P. L. Dold and G. R. Marais: Procedures for determining influent COD fractions and the maximum specific growth rale of heterotrophs in activated sludge systems. Water Science and Technology, 18 (1986), 91.
  • [15] I. Enbutsu, K. Baha, N. Hara, K. Waseda and S. Nogita: Integration of multi AI paradigms for intelligent operation support systems fuzzy rule extraction from a neural network. In Jank B. (Ed.) 6th IAWQ Workshop on Instrumentation. Control and Automation of Water & Wastewater Treatment and Transportation Systems, IAWQ. Berlington, (1993), 171-180.
  • [16] M. S. Gelormino and N. L. Ricker: Model-predictive control of a combined sewer system, Int. J. Control, 59 (1994), 793-816.
  • [17] M. Henzie, C. P. L. Grady Jr., G. R. Marais and T. Matsuo: Activated sludge model No. 1. IAWPRC Scientific and Technical Reports No. 1. IAWPRC, London, 1987.
  • [18] M. Henze, W. Gujer, T. Mino, T. Matsuo, M. C. Wentzel, G. R. Marais, M. C. M. Loodsdrecht: Activated sludge model No. 20, ASM2D. Water Science and Technology, 39 (1999), 165-182.
  • [19] M. Hiraoka M. K. Tsumura, I. Fujitsa and T. Kanaya: System identification and control of activated sludge process by use of autoregressive model. In Briggs R. (Ed.) Instrumentation, Control and Automation of Water and Wastewater Treatment and Transportation Systems. Advances in Water Pollution Control, IAW PRC, Pergamon Press, (1990), 121-128.
  • [20] A. Holmberg: On the practical identifiability of microbial growth model incorporating Michaelis Menten type nonlinearities. Math. Biosciences, 62 (1982), 23-43.
  • [21] A. Holmberg and J. Ranta: Procedures for parameter and state estimation of a microbial growth process model. Automatica, 18 (1982), 181-193.
  • [22] U. Jeppsson and G. Olsson: Reduced order models for on-line parameter identification of the activated sludge process. In Jank B. (Ed.) Proc. 6th IAWQ Workshop on Instrumentation, Control and Automation of Water & Wastewater Treatment and Transportation Systems, IAWQ, Berlington, (1993).
  • [23] G. J. Kynch: A theory ol sedimentation. Trans. Faraday Sac, 48 (1952), 166 176.
  • [24] J. Nahlik and Z. Burianec: On line parameter and state estimation of continuous cultivation by extended Kalman filter. Appl. Microb., and Biotech., 28 (1988), 128-134.
  • [25] Z. Nahorski: Planowanie eksperymentu dla identyfikacji modeli elementów hydraulicznych w oczyszczalni ścieków w Rzeszowie. Raport 19/9/S-10/96. IBS PAN, Warszawa, 1994, (in Polish).
  • [26] A. J. Niemi: Variable parameter model of the continuous (low vessel. Mathl. Camp. Modelling, 11 (1988), 32-37.
  • [27] V. Novotny, H. Jones, X. Feng and A. Capodaglio: Time series analysis models of activated sludge plants. Water Science and Technology, 23 (1991), 1107-1116.
  • [28] O. Olsson, B. Andersson, B. Hellstrom, H. Holmstrom, L. Reinius and P. Vopatek: Measurements, data analysis and control methods in wastewater treatment plants slate of the art and future trends. Water Science and Technology, 21 (1989), 1333-1345.
  • [29] J. Studziński, T. Tesche and J. Łomotowski: Modele komputerowe procesów i obiektów oczyszczalni ścieków dla celów symulacji, prognozowania i sterowania. In J. Lemański, J. Łomotowski, S. Zabawa (Eds.) Mat. II Międzyn. Symp.Nauk.Szkololen. nf. Problemów monitoringu i automatyzacji oczyszczalni ścieków. Ustronie Morskie, 13 16.09.1998, PZIiTS, Poznań, 1998, 4-17, (in Polish).
  • [30] J Studziński, T. Tesche and L. Bogdan: Control of wastewater treatment plants using neural networks for decision making and forecasting. In A. Bargiela, E. Kerckhoffs (Eds.) Proceedings of the 10th Europ. Simul. Symp. and Exhibition ESS'98 on Simul. in Industry and Simul. Technology. Nottingham, (1998), 633-637.
  • [31] W. Y. Svrcek, R. F. Elliot and J. E Zajic: The extended Kalman filter applied to a continuous culture model. Biotech. Bioengng., 16 (1974), 827 846.
  • [32] R. Szetela: Model dynamiczny oczyszczalni ścieków z osadem czynnym. Prace Naukowe Inst. Inż. Ochrony Środow. Polit. Wrocławskiej 64 Seria: Monografie 32, 1990, (in Polish).
  • [33] R. Szetela: Wstępna kalibracja modelu symulacyjnego WTPD dla oczyszczalni ścieków w Rzeszowie. Raport 22/2/S 17/97, Systems Research Institute, Polish Academy of Sciences. Warsaw, 1997, (in Polish).
  • [34] O. Wanner, J. Kappeler and W. Gujer: Calibration of an activated sludge model based on human expertise and on a mathematical optimization technique A comparison. Water Science and Technology. 25 (1992), 141-148.
  • [35] S. Watanabe, K. Baba, M. Yoda, W. Wu, I. Enbutsu, M. Hiraoka and T. Tsumura: Intelligent operation support system for activated sludge process. In Jank B. (Ed.) 6th IAWQ Workshop on Instrumentation. Control and Automation of Water & Wastewater Treatment and Transportation Systems. IAWQ. Berlinglon, (1993), 171-180.
  • [36] M. C. Wentzel, G. A. Ekama and G. R. Marais: Processes and modelling of nitrification denitrification biological excess phosphorus removal systems - a review. Water Science and Technology, 25 (1992), 59.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW9-0005-0896
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.