Czasopismo
2009
|
Vol. 19, no. 2
|
205-216
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The goal of this paper is to study stabilization techniques for a system described by nonlinear second-order differential equations. The problem is to determine the feedback control as a function of the state variables. It is shown that the following controllers can asymptotically stabilize the system: linear position feedback, linear velocity feedback and a group of nonlinear feedbacks. The asymptotic stability of the closed-loop system has been proved by LaSalle's invariance principle. The results of numerical computations are included to verify theoretical analysis and mathematical formulation.
Czasopismo
Rocznik
Tom
Strony
205-216
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Akademia Górniczo-Hutnicza, Department of Automatics, Kraków, Poland, pawel.skruch@agh.edu.pl
Bibliografia
- [1] J. M. GUCKENHEIMER and P. HOLMS: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Berlin, Germany, Springer, 1983.
- [2] C. HAYASHI: Nonlinear oscillations in physical systems. New York, McGraw-Hill, 1964.
- [3] T. KOBAYASHi: Low gain adaptive stabilization of undamped second order systems. Arch. Control ScL, 11(1-2), (2001), 63-75.
- [4] J. LASALLE and S. LEFSCHETZ: Stability by Liapunov's direct method with ap-plications. New York and London, Academic Press, 1961.
- [5] A. H. NAYFEH and D.T. MOOK: Nonlinear oscillations. New York, John Wiley & Sons, 1979.
- [6] N. MINORSKY: Theory of nonlinear control systems. New York, McGraw-Hill, 1969.
- [7] W. MITKOWSKI: Stabilization of dynamie systems. Warsaw, Poland, WNT, 1991.
- [8] W. MITKOWSKI: Dynamie feedback in LC ladder network. Buli. Pol. Acad. ScL Tech. ScL, 51(2), (2003), 173-180.
- [9] W. MITKOWSKI: Stabilization of LC ladder network. Buli. Pol. Acad. ScL Tech. ScL, 52(2), (2004), 109-114.
- [10] W. MITKOWSKI: Analysis of undamped second order systems with dynamie feed-back. Control Cybern., 33(4), 2004.
- [11] W. MITKOWSKI and P. SKRUCH: Stabilization of second-order systems by linear position feedback. Proc. of the Wth IEEE Int. Conf. on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, (2004), 273-278.
- [12] W. MITKOWSKI and P. SKRUCH: Stabilization methods of a non-linear oscilla-tor. Proc. of the Ilth IEEE Int. Conf. on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, (2005), 215-220.
- [13] F. C. MOON: Chaotic vibrations: An introduction for applied scientists and engi-neers. New York, John Wiley & Sons, 2004.
- [14] AJ. PRITCHARD: Stability and stabilization of second-order systems. IMA J. Appl. Math., 7 (1971), 348-360.
- [15] P. SKRUCH: Stabilization of second-order systems by non-linear feedback. Int. J. Appl. Math. Comput. ScL, 14(4), (2004), 455-460.
- [16] P. SKRUCH: Stabilization of linear infinite dimensional oscillatory systems. PhD dissertation, AGH University of Science and Technology, Institute of Automatics, Kraków, Poland, 2006.
- [17] M. W. SPONG and M. VIDYASAGAR: Robot dynamics and control. New York, Willey, 1989.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0061-0011