Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 18, no. 1 | 99-120
Tytuł artykułu

Robust nonlinear PI for attitude stabilization of a four-rotor mini-aircraft: From theory to experiment

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the Euler angles parametrization, a new method for the attitude control of a vertical take-off and landing (VTOL) quadrotor aircraft is proposed. It relies on the combination of the backstepping technique and a nonlinear robust PI controller. The integral action gain is nonlinear and based on a switching function that allows a robust behavior for the overall control law. One of the strengths of the proposed approach is its robustness with respect to plant parameters uncertainties. The proposed approach has been tested in simulation and in real time and shows good performance.
Wydawca

Rocznik
Strony
99-120
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wzory
Twórcy
autor
autor
Bibliografia
  • [1] E. ALTUG, J. P. OSTROWSKI and R. MAHONY: Control of a quadrotor helicopter using visual feedback. Proc. IEEE Int. Conf on Robotics and Automation. Washington, DC. (2002), 72-77.
  • [2] A. BELHANI, K. BELARBI and F. MEHAZEM: Design of multivariable backstepping controller using genetic algorithm. ACSE 05 Conf., Automatic Control and System Engineering, Cairo, Egypt, (2005).
  • [3] S. BOUABDALLAH, P. MURRIERI and R. SIEGWART: Design and control of an indoor micro quadrotor. Proc. IEEE Int. Conf on Robotics and Automation. New Orleans, LA. (2004).
  • [4] S. BOUABDALLAH and R. SIEGWART: Backstepping and sliding mode techniques applied to an indoor micro quadrotor. Proc. IEEE Int. Conf on Robotics and Automation, Barcelona, Spain, (2005).
  • [5] P. CASTILLO, A. DZUL and R. LOZANO: Real-time stabilization and tracking of a four rotor mini rotorcraft. IEEE Trans. Control System Technology. 12(4), (2004), 510-516.
  • [6] P. E. CROUCH and B. BONNARD: An appraisal of linear analytic systems theory with applications to attitude control. European Space Agency Contract Rep. ESTEC Contract 3771/78/NL/AD (SC), 1980.
  • [7] S. S. GE, C. C. HANG and T. ZHANG: Stable adaptive control for nonlinear multivariable systems with a triangular control structure. IEEE Trans. Automatic Control, 45(6), (2000), 1221-1225.
  • [8] T. HAMEL, R. MAHONY, R. LOZANO and J. OSTROWSK1: Dynamic modelling and configuration stabilization for an X4-flyer. Proc. IFAC World Congress, Barcelona, Spain, (2002).
  • [9] G. HOFFMANN, D. G. RAJNARAYAN, S. L. WASLANDER, D. DOSTAL, J. S. JANG and C. J. TOMLIN: The stanford testbed of autonomous rotorcraft for multi agent control (STARMAC). Proc. Digital Avionics Systems Conf, Salt Lake City, USA, (2004).
  • [10] P. C. HUGHES: Spacecraft attitude dynamics. Wiley, New York, 1986.
  • [11] M. KRISTIC, I. KANELLAKOPOULOUS and P.T. KOKOTOVIC: Nonlinear and adaptive control. John Wiley & Sons, New York, USA, 1995.
  • [12] F. LIZARRAIDE and J. T. WEN: Attitude control without angular velocity measurement: A passivity approach. IEEE Trans. Automatic Control, 41(3), (1996), 468-472.
  • [13] R. MAHONY and T. HAMEL: Adaptive compensation of aerodynamic effects during takeoff and landing manoeuvers for a scale model autonomous helicopter. European J. of Control, 7 (2001), 43-58.
  • [14] G. MEYER: Design and global analysis of spacecraft attitude control systems. NASA Technical Report, R-361, 1971.
  • [15] P. POUNDS, R. MAHONY, P. HYNES and J. ROBERTS: Design of a four-rotor aerial robot. Proc. Australian Conf on Robotics and Automation, Auckland, Australia, (2002).
  • [16] R. JR. PRINGLE: On the stability of a body with connected moving parts. AIAA I of Guidance and Control, 4(8), (1966).
  • [17] R. W. PROUTY: Helicopter performance, stability and control. Melbourne, FL: Krieger, 1995.
  • [18] J. J. SLOTINE and W. Li: Apllied nonlinear control. Prentice Hall, Englewood Cliffs, N.J. 1991.
  • [19] A. TAYEBI and S. MCGILVRAY: Attitude stabilization of a four-rotor aerial robot. Proc. IEEE Conf. Decision and Control, Atlantis, Bahamas, (2004), 1216-1221.
  • [20] A. TAYEBI and S. MCGILVRAY: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Systems Technology, 14(3), (2006), 562-571.
  • [21] A. R. TEEL: Global stabilization and restricted tracking for multiple integrators with bounded controls. System Control Letters, (1992).
  • [22] A. R. TEEL: A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Automatic Control, 41 (1996), 1256-1270.
  • [23] S. L. WASLANDER, G. M. HOFFMANN, J. S. JANG and C. J. TOMLIN: Multi-agent qadrotor testbed control design: Integral sliding mode vs. reinforcement learning. Proc. IEEE/RSJ Int. Conf on Intelligent Robots and Systems, Edmonton, Canada, (2005).
  • [24] J. T.-Y. WEN and K. KREUTZ-DELGADO: The attitude control problem. IEEE Trans. Automatic Control, 36(10), (1991), 1148-1162.
  • [25] J. R. WERTZ: Spacecraft attitude determination and control. Amsterdam, the Netherlands: D. Reidel, Members of the Technical Staff, Attitude Systems Operation, Computer Sciences Corp. 1978.
  • [26] B. WIE and P. M. BARBA: Quaternion feedback for spacecraft large angle manoeuvres. AIAA J. of Guidance and Control, 88(3), (1985), 360-365.
  • [27] B. WIE, H. WEISS and A. ARAPOSTATHIS: Quaternion feedback regulator for spacecraft eigenaxis rotations. AIAA J. of Guidance and Control, 12(3), (1989), 375-380.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0045-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.