Czasopismo
2007
|
Vol. 17, no. 4
|
459-468
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In the paper active magnetic bearings system was used for non-contact suspension of a rigid rotor. Optimal robust control method was applied to stabilize and reduce the rotor vibrations. The rotor is supported by two radial heteropolar magnetic bearings and additionally with one axial passive bearing with permanent magnets. The position of the rotor was measured in two radial directions of each active magnetic bearing and in axial direction of the passive magnetic bearing by the eddy-current sensors. The power amplifiers (PWM) were used to generate a current control signals. For pre-investigations a simple local PID controllers were designed. The PID controllers were used to stabilize nominal model of unstable open-loop system. Based on the performances of the PID closed-loop system the H-infinity optimal control laws were derived. The robust controllers were designed for augmented model of the plant. Next, the computer simulations and experimental investigations were carried out. The robust controller was designed according to Safonov, Limebeer and Chiang formulae. The control algorithm was implemented in a digital signal processor. The experimental and simulation results show the magnetic suspension system has good transient responses and tracking abilities. The H-infinity controller ensures the robust performance and stability of the closed-loop system in spite of disturbances and good vibration compensation.
Czasopismo
Rocznik
Tom
Strony
459-468
Opis fizyczny
Bibliogr. 7 poz., rys.
Twórcy
autor
autor
- Bialystok Technical University, Faculty of Mechanical Engineering, Department of Automatics and Robotics, Bialystok, Poland
Bibliografia
- [1] G. SCHWEITZER, H. BLEULER and A. TRAXLER: Active magnetic bearingsbasics. Properties and applications of active magnetic bearings. Switzerland, ETH, 1994.
- [2] J. CAO and Q. C HEN: Decoupling control for a 5-Dof rotor supported by active magnetic bearings. 6th Int. Conf. on Electrical Machines and Systems, bf 2 ICEMS, (2003), 477-480.
- [3] K. ZHOU and J.C. DOYLE: Essentials of robust control. Prentice Hall, 1998.
- [4] E. LANTTO: Robust control of magnetic bearings in subcritical machines. Dissertation, Helsinki University of Technology, 1999.
- [5] Z. GOSIEWSKI and K. FALKOWSKI: Multifunctional magnetic bearings. Scientific Library of Aviation Institute, Warsaw, 2003, (in Polish).
- [6] Z. GOSIEWSKI and A. MYSTKOWSKI: The choice of weight functions in robust control system of magnetic suspension. Proc. Conf. PIAP AUTOMATION'2006, Warsaw, (2006), 402-411,
- [7] M. G. SAFONOV, D. J. N. LIMEBEER and R. CHIANG: Simplifying the theory via loop shifting. Matrix pencil and descriptor concepts. Int. J. Control, 50(6), (1989), 2467-2488.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0042-0015