Czasopismo
2002
|
Vol. 12, no. 1/2
|
37-69
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper a trajectory tracking control problem for a nonholonomic mobile robot by making use of a kinematic oscillator has been solved. Firstly - time varying oscillator is axamined to control nonholomic mobile robot based only on its kinematics. Secondly - backstepping procedure is proposed to include robot dynamics and servo loop. It is shown that overall multilevel controller is asymptotically globally stable to a amall error different from zero. A wide range of simulation results are presented which illustrate behaviour of the controller with respect to tuning its parameters. Some preliminary experiments are reported too.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
37-69
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Poznań University of Technology, Institute of Control and Systems Engineering, ul. Piotrowo 3a, 60-965 Poznań, Poland, Krzysztof.Kozlowski@put.poznan.pl
autor
- Poznań University of Technology, Institute of Control and Systems Engineering, ul. Piotrowo 3a, 60-965 Poznań, Poland, Jaroslaw.Majchrzak@put.poznan.pl
Bibliografia
- [1] A. Astolfi: Asymptotic stabilization of nonholonomic systems with discontinuous control. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, 1996.
- [2] B. D’andrea-Novel, G. Campion and G. Bastin: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. of Robotics Research, 14(6), (1995), 543-559.
- [3] L. Beji and Y. Bestaoui: A tracking control method of mobile robot with kinedynamics considerations. Proc. of the 5th IFAC Symposium, NOLCOS, (2001).
- [4] Y. Bestaoui: An optimal velocity generation of a rear wheel drive tricycle along a specified path. Proc. of the American Control Conf., (2000), 2907-2911.
- [5] R. W. Brockett: Asymptotic stability and feedback stabilization. In Differential Geometric Control Theory, R.W. Brockett, R. S. Milman and H. J. Susmann (Eds), Birkhauser, Boston, (1983), 181-191.
- [6] G. Campion, B. D’Andrea-Novel And G. Bastin: Controllability and feedback stabilization on nonholonomic mechanical systems. In C. Canudas de Wit, (Ed), Lecture notes in Control and Information, Proc. of the IEEE Int. Conf. On Robotics and Sciences, Springer-Verlag, (1991), 106-224.
- [7] W. E. Dixon and D. M. Dawson: Global exponential set point control of wheeled mobile robots; a Lyapunov approach. Automatica, 36 (2000), 1741-1746.
- [8] W. E. Dixon, D. M. Dawson, F. Zhang and E. Zergeroghe: Global exponential tracking control of a mobile robot system via a PE condition. IEEE Trans. on Systems, Man and Cybernetics - Part B: Cybernetics, 30(1), (2000), 129-142.
- [9] W. E. Dixon, D. M. Dawson, E. Zergeroglu and F. Zhang: Robust tracking and regulation control for mobile robots. Int. J. of Robust and Nonlinear Control, 10 (2000), 199-216.
- [10] R. Fierro: A hybrid system approach to a class of intelligent control systems. Ph.D. Thesis, The University of Texas at Arlington, 1997.
- [11] M. Galicki; Robust Tracking of manipulators subject to control constraints. Studies in Automation and Information Technology, 25 (2000), 83-93 (in Polish).
- [12] A. Isidori: Nonlinear Control Systems. 2nd edition, Springer-Verlag, 1989.
- [13] H. K. Khalil: Nonlinear Systems. 2nd edition, Prentice-Hall, 1995.
- [14] I. Kolmanovsky and N. Harris Mcclamroch: Developments in nonholonomic control problems. IEEE Control Systems, (1995), 20-36.
- [15] K. Kozłowski and J. Majchrzak: Steering of a nonholonomic mobile robot using a kinematic oscillator. Proc. of the National Conference on Robotics, (2001), 31-44 (in Polish).
- [16] Ti-Chung Lee, Kai-Tai Song, Ching-Hung Lee and Ching-Cheng Teng: Tracking control of unicycle-modeled mobile robots using a saturation feedback cantroller. IEEE Trans. on Control Systems Technology, 9(2), (2001), 305-318.
- [17] M. Kristić, I. Kanellakopoulos and P. Kokotović : Nonlinear and adaptive control design. John Wiley & Sons, Inc. 1995.
- [18] R. Marino and P. Tomei: Nonlinear Control Design, Geometric, Adaptive and Robust. Prentice Hall, 1995.
- [19] A. Mazur: Control algorithms for the kinematics and dynamics of mobile manipulators: a comparative study. Archives of Control Sciences, 11(3/4), (2001), 223-244.
- [20] P. Morin and C. Samson: A characterization of the Lie Algebra Rank Condition by transverse periodic functions. Proc. of the IEEE Conference on Decision and Control, (2000), 3988-3993.
- [21] P. Morin and C. Samson: Feedback control of nonholonomic wheeled vehicle. Archives of Control Sciences, 12(1/2), (2002), 7-36.
- [22] P. Morin and C. Samson: Practical stabilization of a class of nonlinear systems. Application to chain systems and mobile robots. Proc. of the IEEE Conference on Decision and Control, (2000), 2989-2994.
- [23] L. Palopoli, F. Conticelli and B. Allotta: Multi-level stabilizing control of an nonholonomic vehicle and its discrete-time multirate implementation. IEEE Int. Conf. on Robotics and Automation, (2000), 1830-1836.
- [24] J. B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems and Control Letters, 18 (1992), 147-158.
- [25] C. Samson: Time-varying feedback stabilization of car-like wheeled mobile robots. Int. J. of Robotics Research, 12 (1993), 55-64.
- [26] C. Samson: Velocity and torque feedback control of an nonholonomic cart. Int. Workshop in Adaptive and Nonlinear Control; Issues in Robotics, (1990), 125-151.
- [27] D. J. Sfirdelen: Feedback control of nonholonomic mobile robots. Ph.D. Thesis, Department of Engineering Cybernetics, The Norwegian Institute of Technology, 1993.
- [28] K. Tchoń , A. Mazur, I. Dulęba, R. Hossa and R. Muszyński: Robot manipulators and mobile robots: Models, Trajectory Planning, Control. Akademicka Oficyna Wydawnicza PLJ, Warsaw, 2000, (in Polish).
- [29] Jung-Min Jong-Wan Kim: Sliding mode motion control of nonholonomic mobile robots. IEEE Control Systems, (1999), 15-23.
- [30] Y. Yamamoto and X. Yun: Coordinating locomotion and manipulation of a mobile manipulator. IEEE Trans. on Automatic Control, 39(6), (1994), 1326-1332.
- [31] B. J. Young, J. R. Lawton and R. W. Beard: Two hybrid control schemes for nonholonomic robots. Proc. of the IEEE International Conference on Robotics and Automation, (2000), 1824-1829.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0002-0048