Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | Vol. 12, no. 1/2 | 7-36
Tytuł artykułu

Feedback control of nonholonomic wheeled vehicles. A survey

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is an introduction and overview to the problem of feedback control of nonholomic wheeled vehicles. Solutions proposed during the last decade and a new approach currently developed by the authors of this article are presented.
Wydawca

Rocznik
Strony
7-36
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
  • INRIA, 2004 Route des Lucioles, 06902 Sophia-Antipolis Cedex, France
autor
  • INRIA, 2004 Route des Lucioles, 06902 Sophia-Antipolis Cedex, France
Bibliografia
  • [1] C. Altafini and P.O. Gutman: Path following with reduced off-tracking for the n-trailer system. Proc. IEEE Conf. on Decision and Control, Tampa, (1998), 3123-3128.
  • [2] M. K. BennanI and P. Rouchon: Robust stabilization of flat and chained systems. Proc. European Control Conference, Roma, (1995), 2642-2646.
  • [3] R.W. Brockett: Asymptotic stability and feedback stabilization. In R.S. Millman, R.W. Brockett and H.H. Sussmann, (Eds), Differential Geometric Control Theory. Birkauser, 1983.
  • [4] G. Campion, B. D’Andrea Novel and G. Bastin: Structural properties and classification of dynamic models of wheeled mobile robots. IEEE Trans. On Robotics and Automation, 12 (1996), 47-62.
  • [5] C. CANUDAS DE WIT, B. SICILIANO and G. BASTIN (EDS): Theory of robot control. Springer Verlag, 1996.
  • [6] C. Canudas de Wit and O. J. Sördalen: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. on Automatic Control, 37(11), (1992), 1791-1797.
  • [7] J.-M. Coron and L. Rosier: A relation between continuous time-varying and discontinuous feedback stabilization. J. of Math. Syst. Estim. and Control, 4 (1994), 67-84.
  • [8] B. D’Andréa Novel, G. Campion and G. Bastin: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. of Robotics Research, 14 (1995), 543-559.
  • [9] A. De Luca, G. Oriolo and C. Samson: Feedback control of a nonholonomic car-like robot. In J.-P. Laumond, editor, Robot motion planning and control, volume 229 of LNCIS. Springer Verlag, 1998.
  • [10] C. Canudas de Wit, H. Khennouf, C. Samson and O.J. Sfirdalen: Nonlinear control for mobile robots. In Y.F. Zheng, (Ed), Recent trends in mobile robots. World Scientific, 1993.
  • [11] C. Canudas de Wit and C. Samson.: Nonlinear feedback control. In C. Canudas de Wit, B. Siciliano, and G. Bastin, (Eds), Theory of robot control. Springer Verlag, 1996.
  • [12] E.D. Dickmanns and A. Zapp: Autonomous high speed road vehicle guidance by computer vision. In Selected paper from 10th triennal Congress of IFAC, Pergamon Press, Munich, (1987), 221-226.
  • [13] W.E. Dixon, D.M. Dawson, E. Zergeroglu and F. Zhang: Robust tracking and regulation control for mobile robots. Int. J. of Robust and Nonlinear Control, 10 (2000), 199-216.
  • [14] M. Fliess, J. Lévine, P. Martin and P. Rouchon: Design of trajectory stabilizing feedback for driftless flat systems. Proc. European Control Conf., Roma, (1995), 1882-1887.
  • [15] M. Fliess, J. Lévine, P. Martin and P. Rouchon: Flatness and defect of non-linear systems: introductory theory and examples. Int. J. of Control, 61 (1995), 1327-1361.
  • [16] H. Hermes: Nilpotent and high-order approximations of vector field systems. SIAM Review, 33 (1991), 238-264.
  • [17] A. Isidori: Nonlinear Control Systems. Springer Verlag, third edition, 1995.
  • [18] M. KawskI: Homogeneous stabilizing control laws. Control-Theory and Advanced Technology, 6 (1990), 497-516.
  • [19] I. Kolmanovsky and N.H. McClamroch: Developments in nonholonomic control problems. IEEE Control Systems, (1995), 20-36.
  • [20] J.-P. Laumond: Nonholonomic motion planning versus controllability via the multibody car system example. Technical Report STAN-CS, Standford University, 1990, 90-1345.
  • [21] J.-P. Laumond (ED): Robot motion planning and control, 229 Lecture Notes in Control and Information Science, Springer Verlag, 1998.
  • [22] J.-P. Laumond (Ed): La robotique mobile. Collection: Systémes automatisés. HERMES Science Publ., 2001.
  • [23] Z. Li and J.F. Canny (EDS): Nonholonomic motion planning. Kluwer Academic Press, 1993.
  • [24] D.A. Lizárraga: Contributions à la stabilisation des systèmes non-linéaires et à la commande de véhicules sur roues. PhD thesis, Institut National Polytechnique de Grenoble (INPG), 2000. Available at http://www.inria.fr/rrrt/tu-0637.html.
  • [25] D.A. Lizárraga, P. Morin And C. Samson: Non-robustness of continuous homogeneous stabilizers for affine control systems. Proc. IEEE Conf. on Decision and Control, Phoenix, (1999), 855-860.
  • [26] M. Maini, P.Morin, J.-B. Pomet and C. Samson: On the robust stabilization of chained systems by continuous feedback. Proc. IEEE Conf. on Decision and Control, Phoenix, (1999), 3472-3477.
  • [27] R.T. M’Closkey and R.M. Murray: Exponential stabilization of drift less nonlinear control systems using homogeneous feedback. IEEE Trans. on Automatic Control, 42 (1997), 614-628.
  • [28] A. Micaelli, P. Mandin, C. Tahmi, L. Boissier and J.-M. Detriche: Contrôle-commande embarquée. AGROTIQUE, (1989), 373-386.
  • [29] P. Morin, J.-B. Pomet and C. Samson: Developments in time-varying feedback stabilization of nonlinear systems. Proc. IFAC Nonlinear Control Systems Design Symp., Enschede, (1998), 587-594.
  • [30] P. Morin, J.-B. Pomet and C. Samson: Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of lie brackets in closed-loop. SIAM J. on Control and Optimization, 38 (1999), 22-49.
  • [31] P. Morin and C. Samson: Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics. Control, Optimization _ Calculus of Variations, 4 (1999), 1-36.
  • [32] P. Morin and C. Samson: A characterization of the lie algebra rank condition by transverse periodic functions. SIAM J. on Control and Optimization, 40(4), (2001), 1227-1249.
  • [33] P. Morin and C. Samson: Control of non-linear chained systems. From the Routh-Hurwitz stability criterion to time-varying exponential stabilizers. IEEE Trans. on Automatic Control, 45 (2000), 141-146.
  • [34] P. Morin and C. Samson: Practical stabilization of a class of nonlinear systems. application to chain systems and mobile robots. Proc. IEEE Conf. on Decision and Control, (2000), 2989-2994.
  • [35] P. Morin and C. Samson: Commande. In J.-P. Laumond, (Ed), La robotique mobile. Hermes, 2001.
  • [36] P. Morin and C. Samson: Practical stabilization of driftless homogeneous systems based on the use of transverse periodic functions. Technical Report 4184, INRIA, 2001. Available at http://www-sop.inria.fr/rapports/sophia/RR-4184.html.
  • [37] R.M. Murray and S.S. Sastry: Steering nonholonomic systems in chained form. Proc. IEEE Conf. on Decision and Control, (1991), 1121-1126.
  • [38] R.M. Murray and S.S. Sastry: Nonholonomic motion planning: Steering using sinusoids. IEEE Trans. on Automatic Control, 38, (1993), 700-716.
  • [39] W.L. Nelson and I.J. Cox: Local path control for an autonomous vehicle. Proc. IEEE Conf. on Robotics and Automation, (1988), 1504-1510.
  • [40] H. Nijmeijer and A.J. Van der Schaft: Nonlinear Dynamical Control Systems. Springer Verlag, 1991.
  • [41] J.-B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems and Control Letters, 18 (1992), 467-473.
  • [42] P. Rouchon, M. Fliess, J. Lévine and P. Martin: Flatness, motion planning and trailer systems. Proc. IEEE Conf. on Decision and Control, (1993), 2700-2705
  • [43] S.M. Sampei, T. Tamura, T. Itoh and M. Nakamichi: Path tracking control of trailer-like mobile robot. Proc. IEEE/RSJ International Workshop on Intelligent Robots and Systems, Osaka, (1991), 193-198.
  • [44] C. Samson: Velocity and torque feedback control of a nonholonomic cart. Proc. Int. Workshop in Adaptative and Nonlinear Control: Issues in Robotics, (1990). Also in Lecture Notes in Control and Information Science, 162 Springer Verlag, 1991.
  • [45] C. Samson: Path following and time-varying feedback stabilization of a wheeled mobile robot. Proc. Int. Conf. on Automation, Robotics, and Computer Vision, Singapore, (1992), RO-13.1.
  • [46] C. Samson: Control of chained systems. Application to path following and timevarying point-stabilization. IEEE Trans. on Automatic Control, 40 (1995), 64-77.
  • [47] O. J. Sördalen: Conversion of the kinematics of a car with n trailers into a chained form. Porc. IEEE Conf. on Robotics and Automation, Atlanta, (1993), 382-387.
  • [48] O. J. Sördalen and O. Egeland: Exponential stabilization of nonholonomic chained systems. IEEE Trans. on Automatic Control, 40 (1995), 35-49.
  • [49] G. Stefani: Polynomial approximations to control systems and local controllability. Proc. IEEE Conf. on Decision and Control, Ft. Lauderdale, (1985), 33-38.
  • [50] A. R. Teel, R.M. Murray and G. Walsh: Nonholonomic control systems: from steering to stabilization with sinusoids. Proc. IEEE Conf. on Decision and Control, Tucson, (1992), 1603-1609.
  • [51] D. Tsakiris, K. Kapellos, C. Samson, P. Rives and J.-J. Borelly: Experiments in real-time vision-based point stabilization of a nonholonomic mobile manipulator. In A. Casals and A. de Almeida, (Eds), Experimental Robotics V: The Fifth Int. Symp. Springer-Verlag, 1998.
  • [52] Y.F. Zheng (ED): Recent trends in mobile robots, 11 World Scientific Series in Robotics and Automated Systems, World Scientific, 1993.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0002-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.