Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 17, nr 2 | 217-232
Tytuł artykułu

Fixed-point implementation of infinite impulse response notch filters

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many studies have been developed aiming to improve digital filters realizations, recurring to intricate structures and analyzing probabilistically the error's behaviour. The work presented in this paper analyzes the feasibility of fixed-point implementation of classical infinite impulse response notch filters: Butterworth, Chebyshev I and II, and elliptic. To scrutinize the deformations suffered for distinct design specifications, it is assessed : the effect of the quality factor and normalized cut-off frequency, in the number of significant bits necessary to represent the filter's coefficients. The implications brought to FPGA implementation are also verified. The work focuses especially on the implementation of power line notch filters used to improve the signal-to-noise ratio in biomedical signals. The results obtained, when quantizing the digital notch filters, show that by applying second-order sections decomposition, low-order digital filters may be designed using only part of double precision capabilities. High-order notch filters with harsh design constraints are implementable using double precision, but only in second-order sections. Thus, it is revealed that to optimize computation time in real-time applications, an optimal digital notch filter implementation platform should have variable arithmetic precision. Considering these implementation constraints, utmost operation performance is finally estimated when implementing digital notch filters in Xilinx Virtex-5 field-programmable gate arrays. The influence of several design specifications, e.g. type, and order, in the filter's behavior was evaluated. Specifically regarding order, type, input and coefficient number of bits, quality factor and cut-off frequency. Finally the implications and potential applications of such results are discussed.
Wydawca

Rocznik
Strony
217-232
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Instituto de Telecomunicaçoes and Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal, eduardo.pinheiro@lx.it.pt
Bibliografia
  • [1] H. Cheng, G. Chiu: “Finite precision controller implementation - limitation on sample rate”. IEEE/ASME International Conference on AIM, Kobe, Japan, 2003, pp. 634-639.
  • [2] V. Davídek, M Antosová, B. Psenicka: “Finite word-length effects in digital state-space filters”. Radioengineering, vol. 8, no. 4, Dec. 1999, pp. 7-10.
  • [3] B. Liu: “Effect of finite word length on the accuracy of digital filters - a review”. IEEE Transactions on Circuit Theory, vol. CT-18, no. 6, Nov. 1971, pp. 670-677,
  • [4] H. Butterweck, J. Ritzerfeld, M. Werter: “Finite wordlength effects in digital filters: a review”. Fac. Of Elec. Eng., Eindhoven University of Technology, Netherlands, EUT Report 88-E-205, 1988.
  • [5] T. Laakso, J. Ranta, S. Ovaska: “Design and implementation of efficient iir notch filters with quantization error feedback”. IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 3, Jun. 1994, pp. 449-456.
  • [6] R. Otnes, L. McNamee: “Instability thresholds in digital filters due to coefficient rounding”. IEEE Transactions on Audio and Electroacoustics, vol. AU-18, no. 4, Dec. 1970, pp. 456-463.
  • [7] J. Datorro: “The implementation of recursive digital filters for high-fidelity audio”. Journal Audio Engineering Society, vol. 36, Nov. 1988, pp. 851-878.
  • [8] M. Er: “Designing notch filters with controlled null width”. Signal Processing, vol. 24, Sep. 1991, pp. 319-329.
  • [9] T. Laakso, I. Hartimo: “Noise reduction in recursive digital filters using higher-order error feedback”. IEEE Transactions on Signal Processing, vol. 40, May 1992, pp. 1096-1107.
  • [10] J. Wilkinson: Rounding Errors in Algebraic Processes. Englewood Cliffs, New Jersey, 1963.
  • [11] G. Forsythe, C. Moller: Computer Solution of Linear Algebraic Systems. Englewood Cliffs, New Jersey, 1967.
  • [12] B. Widrow: “Statistical analysis of amplitude quantized sampled-data systems”. AIEE Transactions on Applications and Industry, vol. 79, Jan. 1961, pp. 555-568.
  • [13] J. Knatzenelson: “A note on errors introduced by combined sampling and quantization”. IRE Transactions on Automatic Control, vol. AC-7, Apr. 1962, pp. 58-68.
  • [14] J. Knowles, R. Edwards: “Effects of a finite-word-length computer in a sampled-data feedback system”. IEE Proceedings., vol. 112, Jun. 1965, pp. 1197-1207.
  • [15] C. Weaver, J. Van der Groeben, P. Mantey, J. Toole, C. Cole Jr., J. Fitzgerald, R. Lawrence: “Digital filtering with applications to electrocardiogram processing”. IEEE Transactions on Audio and Acoustics, vol. AU-16, no. 3, Sep. 1968, pp. 350-391.
  • [16] K. Liu, R. Skelton, K. Grigoriadis: “Optimal controllers for finite wordlength implementation”. IEEE Transactions on Automatic Control, vol. 37, no. 9, Sep. 1992, pp. 1294-1304.
  • [17] G. Yan: “New digital notch filter structures with low coefficient sensitivity”. IEEE Transactions on Circuits and Systems, vol. CAS-31, no. 9, Sep. 1984, pp. 825-828.
  • [18] R. Goodal: “A practical method for determining coefficient word length in digital filters”. IEEE Transactions on Signal Processing, vol. 40, no. 4, Apr. 1992, pp. 981-985.
  • [19] J.F. Kaiser: “Digital filters”. System Analysis by Digital Computers, F.F. Kuo, J.F. Kaiser, Eds. New York, Wiley, 1966.
  • [20] P. Mantey: “Eigenvalue sensitivity and state-variable selection”. IEEE Transactions on Automatic Control, vol. AC-13, no. 3, Jun. 1968, pp. 263-269.
  • [21] E.C. Pinheiro, O. Postolache, P.M. Girão: “Digital Notch Filters Implementation with Fixed-point Arithmetic”. Proc. XIX IMEKO World Congress, Lisbon, Portugal, Sept. 2009, pp. 491-496.
  • [22] A.V. Oppenheim, R.W. Schafer: Discrete-Time Signal Processing 3rd Edition. Englewood Cliffs, New Jersey, Prentice-Hall, 2009.
  • [23] J.O. Smith: Introduction to Digital Filters with Audio Applications. W3K Publishing, 2007.
  • [24] G. Dahlquist, Å. Björck: Numerical Methods. Englewood Cliffs, New Jersey, Prentice-Hall, 2003.
  • [25] A. Antoniou: Digital Filters - Analysis, Design, and Applications. New York, USA, McGraw-Hill, 2000.
  • [26] L.B. Jackson: Digital Filters and Signal Processing. New York, USA, Springer, 2010.
  • [27] M. Kozioł: “Frequency-response compensation of distorting parts of measurement systems”. Metrol. Meas. Syst., vol. XIII, no. 3, 2006, pp. 263-276.
  • [28] IEEE, IEEE 754-2008 Standard for Floating-Point Arithmetic, August 2008.
  • [29] D. Gallo, C. Landi, M. Luiso: “Compensation of current transformers by means of field programmable gate array”. Metrol. Meas. Syst., vol. XVI, no. 2, 2009, pp. 279-288.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0065-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.