Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 17, nr 2 | 173-194
Tytuł artykułu

New Carré Equation

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work offers new equations for phase evaluation in measurements. Several phase-shifting equations with an arbitrary but constant phase-shift between captured intensity signs are proposed. The equations are similarly derived as the so called Carré equation. The idea is to develop a generalization of the Carré equation that is not restricted to four images. Errors and random noise in the images cannot be eliminated, but the uncertainty due to their effects can be reduced by increasing the number of observations. An experimental analysis of the errors of the technique was made, as well as a detailed analysis of errors of the measurement. The advantages of the proposed equation are its precision in the measures taken, speed of processing and the immunity to noise in signs and images.
Wydawca

Rocznik
Strony
173-194
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
  • Pontificia Universidade Catolica de Minas Gerais, Av. Dom Jose Gaspar 500, CEP 30535-610, Belo Horizonte, Minas Gerais, Brazil, paamj@oi.com.br
Bibliografia
  • [1] H. Schreiber, J.H. Bruning: Phase shifting interferometry. D. Malacara (Ed.), Optical Shop Testing, Wiley Interscience, New York, 2007.
  • [2] D. Malacara, M. Serv´ın, Z. Malacara: Interferogram Analysis for Optical Testing. Taylor & Francis, New York, 2005.
  • [3] K. Creath: “Phase-measurement interferometry techniques”. Progress in Optics, Elsevier Science Publishers, Amsterdam 1988, vol. 17, no.1 pp. 349-362.
  • [4] J. Novak: “Five-step phase-shifting algorithms with unknown values of phase shift”. International Journal for Light and Electron Optics, 2003, vol. 114, no. 2, pp. 63-68.
  • [5] J. Novak, P. Novak, A. Miks: “Multi-step phase-shifting algorithms insensitive to linear phase shift errors”. Optics Communications, 2008, vol. 281 no. 21. pp. 5302-5309.
  • [6] P.S. Huang, H. Guo: “Phase-shifting Shadow Moiré Using the Carré Algorithm”. Proceedings of the SPIE, 2008, vol. 7066, no.1, pp. 70660B-70660B-7.
  • [7] D. Malacara (ed.): Optical shop testing. John Wiley and Sons, New York 1992.
  • [8] R.R. Cordero, J. Molimard, A. Martinez, F. Labbe: “Uncertainty analysis of temporal phase-stepping algorithms for interferometry”. Optics Communications, 2007, vol. 275, no. 1, pp. 144-155.
  • [9] F.S. Hillier, G.J. Lieberman: Introduction to operations research. 8th. ed. [S.l.]: McGraw-Hill; New York 2005.
  • [10] D.C. Ghiglia, M.D. Pritt: Two-dimensional phase unwrapping: Theory, algorithms and software. John Wiley & Sons, Inc., New York 1998.
  • [11] J.M. Huntley: “Noise imune phase unwrapping algorithm”. Appl. Opt., 1989, vol.28, no.1, pp. 3268-3270.
  • [12] E. Zappa, G. Busca: “Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry”. Optics and Lasers in Engineering, 2008, vol. 46, no. 2, pp. 106−116.
  • [13] C. Han, B. Han: “Error analysis of the phase-shifting technique when applied to shadow moire”. Appl. Opt., 2006, vol. 45, no.1, pp. 1124-1133.
  • [14] M.F. Triola: Elementary Statistics. 10th. ed. Addison Wesley, Boston 2007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0065-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.