Warianty tytułu
System neuronowo-rozmyty z hierarchicznym podziałem przestrzeni wejściowej
Języki publikacji
Abstrakty
The paper presents the method of hierarchical domain partition in fuzzy inference system with parameterized consequences. The novelty of the solution is the partition based on fuzzy clustering. The experimental results on the synthetic and real life data set are also presented.
Artykuł przedstawia metodę hierarchicznego podziału dziedziny w systemie neuronowo-rozmytym. Nowością jest zastosowanie grupowania rozmytego do uzyskania podziału. Zaprezentowane także zostały wyniki eksperymentów zarówno na syntetycznych, jak i na rzeczywistych zbiorach danych.
Czasopismo
Rocznik
Tom
Strony
43-53
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Instytut Informatyki Politechnika Śląska, 44-100 Gliwice, ul. Akademicka 16 tel. (032) 237-28-43, krzysztof.siminski@polsl.pl
Bibliografia
- 1. Almeida M. R. A.: Sistema hibrido neuro-fiizzy-genetico para mineracao automatica de dados. Master's thesis, Pontifica Universidade Católica do Rio de Janeiro, 2004.
- 2. Basak J., Krishnapuram R.: Interpretable hierarchical clustering by constructing an unsupervised decision tree. IEEE Transactions on Knowledge and Data Engineering, 17(1), 2005, p. 121-132.
- 3. Box G. E. P., Jenkins G.: Time Series Analysis, Forecasting and Control. Holden-Day, Incorporated, 1976.
- 4. Breiman L., Friedman J. H., Olshen R. A., Stone C. J.: Classification and Regression Trees. Wadsworth, Belmont 1984.
- 5. Czekalski P.: Evolution-fuzzy rule based system with parameterized consequences. International Journal of Applied Mathematics and Computer Science, 16 (3), 2006, p. 373-385.
- 6. Czogała E., Łęski J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in Fuzziness and Soft Computing. Physica-Verlag, A Springer-Verlag Company, 2000.
- 7. Jang J.-S. R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 23, 1993, p. 665-684.
- 8. Łęski J.: Systemy neuronowo-rozmyte. WNT, Warszawa, 2008.
- 9. Łęski J., Czogała E.: A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and selected applications. BUSEFAL, 7, 19971, p. 72-81.
- 10. Łęski J., E.: A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and selected applications. Fuzzy Sets and Systems, 108(3), 1999, p. 289-297.
- 11. Murthy S. K., Kasif S., Salzberg S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research, 2, 1994, p. 1-32.
- 12. Nauck D., Kruse R.: NEFCLASS - A Neuro-Fuzzy Approach for the Classification of Data. Proceedings of the 1995 ACM Symposium on Applied Computing, 1995, p. 461-465.
- 13. Nauck D., Kruse R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets and Systems, 101, 1999, p. 261-271.
- 14. Nelles O., Isermann R.: Basis function networks for interpolation of local linear models. Proceedings of the 35th IEEE Conference on Decision and Control, 1, 1996, p. 470-475.
- 15. Nelles O., Fink A., Babuska R., Setnes M.: Comparison of two construc-tion algorithms for Takagi-Sugeno fuzzy models. International Journal of Applied Mathematics and Computer Science, 10 (4), 2000, p. 835-855.
- 16. Quinlan J. R.: Induction of decision trees. Machine Learning, 1, 1986, p. 81-106.
- 17. Quinlan J. R.: Learning with continuous classes. In Adams & Sterling, editor, AI'92, Singapore 1992, p. 343-348.
- 18. Quinlan J. R.: Combining instance-based and model-based learning. ML'93, San Mateo 1993.
- 19. Rastogi R., Shim K.: PUBLIC: A decision tree classifier that integrates building and pruning. Data Mining and Knowledge Discovery, 4 (4), 2000, p. 315-344.
- 20. Rutkowski, L., Cpalka K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks, 14 (3), 2003, p. 554-574.
- 21. de Souza F. J., Vellasco M. B. R., Pacheco M. A. C: Load forecasting with the hierarchical neuro-fuzzy binary space partitioning model. International Journal on Computer Systems and Signals, 3(2), 2002, p. 118-132.
- 22. de Souza F. J., Vellasco M. B. R., Pacheco M. A. C: Hierarchical neuro-fuzzy quadtree models. Fuzzy Sets and Systems, 130(2), 2002, p. 189-205.
- 23. Tschichold-Gurman N.: Generation and improvement of fuzzy classifiers with incremental learning using fuzzy RuleNet. SAC '95: Proceedings of the 1995 ACM symposium on Applied Computing, 1995, p. 466-470.
- 24. Wang Y., Witten I. H.: Inducing model trees for continuous classes. In Proc. of Poster Papers, 9th European Conference on Machine Learning, Prague, Czech Republic, April 1997.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0026-0003