Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 55, nr 2 | 78-84
Tytuł artykułu

TiO2 and SiO2 layer deposited by sol-gel method on the Ti6Al7Nb alloy for contact with blood

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The study contains the analysis of TiO2 and SiO2 surface modification impact on physical and chemical characteristics of Ti-6Al-7Nb alloy samples in the solution simulating cardiovascular system. Design/methodology/approach: Sol-gel coatings were selected on the ground of data taken from literature. The base of stock solution consisted of silicon dioxide precursor SiO2 (TEOS) and titanium oxide precursor TiO2. Application of SiO2 and TiO2 coating on the surface of Ti alloy was preceded by mechanical working - grinding (Ra = 0.40 ?m) and mechanical polishing (Ra = 0.12 ?m). Corrosion resistance tests were performed on the ground of registered anodic polarisation curves and Stern method. Electrochemical Impedance Spectroscopy (EIS) was also used in order to evaluate phenomena taking place on the surface of the tested alloys. The tests were made in artificial blood plasma at the temperature of T = 37.0š1°C and pH = 7.0š0.2. Findings: Test results obtained on the ground of voltamperometric and impedance tests showed that electrochemical characteristics of Ti-6Al-7Nb alloy differs relative to the type of surface treatment. Practical implications: Potentiodynamic and EIS studies of corrosion resistance in artificial plasma enable to predict the behavior of modified Ti-6Al-7Nb implants in cardiovascular system. The topic proposed in the article is favourable for the development of entrepreneurship sector due to high demand on such technologies and relatively easy implementation of obtained laboratory test results in the industrial and clinical practice. Originality/value: Suggestion of proper surface treatment variants that incorporate sol-gel method is of perspective significance and will help to develop technological conditions with specified parameters of oxide coating creation on the surface of metallic implants.
Wydawca

Rocznik
Strony
78-84
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
  • Department of Biomaterials and Medical Engineering Devices, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland, witold.walke@polsl.pl
Bibliografia
  • [1] M.C. Advincula, D. Petersen, F. Rahemtulla, R. Advincula, J.E. Lemons, Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants, Journal of Biomedical Materials Research Part B, Applied Biomaterials 80/1 (2006) 107-120.
  • [2] S.M.A. Shibli, S. Mathai, Development and bio-electrochemical characterization of a novel TiO2-SiO2 mixed oxide coating for titanium implants, Journal of Material Science 19 (2008) 2971-2981.
  • [3] Z. Paszenda, J. Tyrlik-Held, Z. Nawrat, J. Żak, J. Wilczek, Usefulness of passive-carbon layer for implants applied in interventional cardiology, Journal of Materials Processing Technology 157-158C (2004) 399-404.
  • [4] Z. Paszenda, Corrosion resistance of coronary stents in a coronary angioplasty, Corrosion Protection 11s/A (2004) 195-198 (in Polish).
  • [5] H. Nan, Y. Ping, C. Xuan, L. Yongxang, Z. Xiaolan, C. Guangjun, Z. Zihong Z. Feng, C. Yuanru, L. Xianghuai, X. Tingfei, Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition, Biomaterials 19 (1998) 771-776.
  • [6] J.Y. Chen, Y.X. Leng, X.B. Tian, L.P. Wang, N. Huang, P.K. Chu, P. Yang, Antithrombotic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta+5)O2 thin films, Biomaterials 23 (2002) 2545-2552.
  • [7] N. Huang, P. Yang, Y. Leng, J. Chen, H. Sun, J. Wang et al., Hemocompatibility of titanium oxide films, Biomaterials 24 (2003) 2177-2187.
  • [8] M. Bartoszek, Z. Drzazga, A study of magnetic anisotropy of blood cells, Journal of Magnetism and Magnetic Materials 196-197 (1999) 573-575.
  • [9] M. Bartoszek, M Balanda, D. Skrzypek, Z. Drzazga, Magnetic field effect on hemin, Physica B 307 (2001) 217-223.
  • [10] J. Szewczenko, W. Walke, K. Nowinska, J. Marciniak, Corrosion resistance of Ti-6Al-4V alloy after diverse surface treatments. Materialwissenschaft und Werkstofftechnik 41/5 (2010) 360-371.
  • [11] W. Chrzanowski, J. Szewczenko, J. Tyrlik-Held, J. Marciniak, J. Zak, Influence of the anodic oxidation on the physicochemical properties of the Ti-6Al-4V ELI alloy, Journal of Materials Processing Technology 162-163 (2005) 163-168.
  • [12] A. Daymi, M. Boujelbene, J. M. Linares, E. Bayraktar, A. Ben Amara, Influence of workpiece inclination angle on the surface roughness in ball and milling of the titanium alloy Ti-6Al-4V, Journal of Achievements in Materials and Manufacturing Engineering 35 (2009) 79-86.
  • [13] S. Tamilselvi, V. Raman, N. Rajendran, Evaluation of corrosion behavior of surface modified Ti-6Al-4V ELI alloy in hanks solution, Journal of Materials Science 40 (2010) 285-293.
  • [14] N. Zaveri, G.D. McEwen, R. Karpagavalli, A. Zhou, Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids, Journal of Nanoparticle 12/5 (2009) 1609-1623.
  • [15] J. Sieniawski, M. Motyka, Superplasticity in titanium alloys, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 123-130.
  • [16] http://large.stanford.edu/courses/2008/ph210/hellstrom1/
  • [17] Z. Paszenda, W. Walke, S. Jadacka, Electrochemical investigations of Ti6Al4V and Ti6Al7Nb alloys used on implants in bone surgery, Journal of Achievements in Materials and Manufacturing Engineering 38/1 (2010) 24-32.
  • [18] J. Szewczenko, M. Pochrząst, W. Walke, Evaluation of electrochemical properties of modified Ti-6Al-4V ELI alloy, Electrical Review 12 (2011) 178-181.
  • [19] B. Łosiewicz, A. Budniok, Use of electrochemical impedance spectroscopy technique to investigate the passivation of intermetallic Fe24Al alloy in sulphuric acid, Corrosion of Protection 11 (2003) 49-54.
  • [20] A. Baron, W. Simka, W. Chrzanowski, EIS tests of electrochemical behaviour of Ti6Al4V and Ti6Al7Nb alloys. Journal of Achievements in Materials and Manufacturing Engineering 21 (2007) 23-26.
  • [21] E. Krasicka-Cydzik, A. Kierzkowska, I. Glazowska, Behavior of anodic layer in Ringer's solution on Ti6Al4V ELI alloy after bending, Archives of Materials Science and Engineering 28 (2007) 231-237.
  • [22] M. Balazic, D. Recek, D. Kramar, M. Milfelner, J. Kopac, Development process and manufacturing of modern medical implants with LENS technology, Journal of Achievements in Materials and Manufacturing Engineering 32 (2009) 46-52.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0050-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.