Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 55, nr 2 | 62-69
Tytuł artykułu

The influence of heat treatment on structure, mechanical properties and corrosion resistance of steel X10CrNi18-8

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to investigate the influence of the heat treatment on the structure, mechanical properties and corrosion resistance of the steel X10CrNi18-8. Design/methodology/approach: The investigated steel was solution heat treated at temperature 1050°C with water cooling and it was analysed the susceptibility to intergranular corrosion at temperature 700°C. Structures were investigated using light microscopy. The examinations of the mechanical properties were conducted on ZWICK 100N5A. Hardness measurements were made by Vickers method r. The investigations of the precipitation process were done by X-ray diffraction phase analysis. Corrosion resistance of investigated steel was examined using potentiodynamic methods. Findings: The structure of analysed steel in as-cast conditions consist of austenitic microstructure with numerous slip bands in areas with deformation martensite ?'. The examined steel after solution heat treatment followed by water-cooling has the structure of austenite with a small amount slip bands.Ageing at 700°C caused precipitation of many chromium carbides on the grain boundaries and inside the grain. The best mechanical properties (UTS=1327 MPa, YS0.2=1287 MPa, 392 HV) has steel as-cast conditions. It was also found that the investigated steel show poor corrosion resistance in 3.5% NaCl solution. Fractographic analyses of the samples after corrosion tests permitted to define the kind and degree of corrosion damage. Research limitations/implications: To investigate in more detail the corrosion behaviour 18-8 austenitic steels, the investigations should include immersion tests and an analysis of corrosion products. Practical implications: The obtained results can be used for searching the appropriate way of improving the corrosion resistance of a special group of steels. Originality/value: The relationship between the heat treatment, structure, mechanical properties and corrosion resistance of X10CrNi18-8 steel was specified.
Wydawca

Rocznik
Strony
62-69
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, monika.kciuk@polsl.pl
Bibliografia
  • [1] M. Karimi, A. Najafizadeh, A. Kermanpur, M. Eskandari, Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel, Materials Charakterization 60 (2009) 1220-1223.
  • [2] J. Talonen, H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta materialia 55 (2007) 6108-6118.
  • [3] A. Kurc, M. Kciuk, M. Basiaga, Influence of cold rolling on the corrosion resistance of austenitic steel, Journal of Achievements in Materials and Manufacturing Engineering 38/2 (2010) 154-162.
  • [4] K. Pałka, A. Weroński, K. Zalewski, Mechanical properties and corrosion resistance of burnished X5CrNi18-9 stainless steel, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 57-62.
  • [5] H.F. Gomes de Abreu, S. Santana de Carvalho, P. de Lima Neto, R. Pires dos santos, V. Nogueira Freire, P. M. de Oliveira Silva, S. Souto Maior Tavares, Deformation induced martensite in an AISI 301LN stainless Steel: characterization and Influence on pitting corrosion resistance, Materials Research 10/4 (2007) 359-366.
  • [6] W. Ozgowicz, A. Kurc, M. Kciuk, Effect of deformationinduced martensite on the microstructure, mechanical properties and corrosion resistance of X5CrNi18-8 stainless steel, Archives of Materials Science and Engineering 43/1 (2010) 42-53.
  • [7] W. Ozgowicz, E. Kalinowska-Ozgowicz, A. Kurc, Influence of plastic deformation on structure and mechanical properties of stainless steel type X5CrNi18-10, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2008) 37-40.
  • [8] Xu Chunchun, Hu Gang, Effect of deformation-induced martensite on pit propagation behavior of 304 stainless steel, Anti-Corrosion Methods and Materials 51 (2004) 381-388.
  • [9] A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, A. M’hich, Corrosion behaviour of AISI 304 stainless steels with Cu coatings in H2SO4, Applied Surface Science 253 (2007) 9164-9176.
  • [10] P.M. de O. Silva, H.F.G. de Abreu, V. H.C. de Albuquerque, P. de Lima Neto, J.M.R.S. Tavares, Cold deformation effect on the microstructures and mechanical properties of AISI 301LN and 316L stainless steels, Materials and Design 32 (2011) 605-614.
  • [11] E. Swallow, H.KD.H. Bhadeshia, High resolution observations of displacements caused by bainitic transformation. Material Science Technology 12 (1996) 121-125.
  • [12] YD. Wang, RL. Peng, XL. Wang, RL. McGreevya, Grainorientation-dependent residual stresses and the effect of annealing in cold-rolled stainless steel. Acta Materialia 50 (2002) 1717-1734.
  • [13] A. Bahadur, BR. Kumar, SG. Chowdhury, Evaluation of changes in X-ray constants and residual stress as a function of cold rolling of austenitic steels, Material Science Technology 20/3 (2004) 387-392.
  • [14] B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, Z.H. Xu, Pitting and stress corrosion cracking behavior in welded austenitic stainless steel, Electrochimica Acta 50 (2005) 1391-1403.
  • [15] S. Ningshen, U. Kamachi Mudali, Pitting and Intergranular Corrosion Resistance of AISI Type 301LN Stainless Steels Journal of Materials Engineering and Performance 19/2 (2010) 274-281.
  • [16] http://www.substech.com/dokuwiki/doku.php?id=pitting_corrosion
  • [17] S. Ghosh, V. Rana, V. Kain, V. Mittal, S.K. Baveja, Role of residual stresses induced by industrial fabrication on stress corrosioncracking susceptibility of austenitic stainless steel, Materials and Design 32 (2011) 3823-3831.
  • [18] S.M. Bruemmer, Grain boundary chemistry and intergranular failure of austenitic stainless steels, Materials Science Forum 46 (1989) 309-334.
  • [19] P. Kritzer Corrosion in high-temperature and supercritical water and aqueous solutions, Journal of Supercritical Fluids 29 (2004) 1-29.
  • [20] L.W. Tsay a, Y.-F. Liua a, R.-T. Huanga, R.-C. Kuo, The effect of sensitization on the hydrogen-enhanced fatigue crack growth of two austenitic stainless steels, Corrosion Science 50 (2008) 1360-1367.
  • [21] J.K. Kim, Y.H. Kim, B. H. Lee, K. Y. Kim, New findings on intergranular corrosion mechanism of stabilized stainless steels, Electrochimica Acta 56 (2011) 1701-1710.
  • [22] J.K. Kim, Y.H. Kim, K. Y. Kim, Influence of Cr, C and Ni on intergranular segregation and precipitation in Ti-stabilized tainless steels, Scripta Materialia 63 (2010) 449-451.
  • [23] J. Baszkiewicz, M. Kamiński, Fundamentals of materials corrosion, The Warsaw University of Technology Publishers, Warsaw, 1997 (in Polish).
  • [24] M. Opiela, A. Grajcar, W. Krukiewicz, Corrosion behaviour of Fe-Mn-Si-Al, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 159-165.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0050-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.