Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2010 | Vol. 31, nr 2A | 489-504
Tytuł artykułu

Hurtownia danych rozmytych: podstawy teoretyczne i praktyczne aspekty użycia

Warianty tytułu
EN
A fuzzy data warehouse: theoretical foundations and practical aspects of usage
Języki publikacji
PL
Abstrakty
PL
Współczesne systemy analityczne coraz częściej sięgają po nowe sposoby analizy danych oparte na rozmytym wnioskowaniu i przetwarzaniu informacji, która nie zawsze jest reprezentowana w sposób precyzyjny. W niniejszym artykule zaprezentowano nowatorski, w pełni funkcjonalny, opracowany i zrealizowany przez autorów system hurtowni danych rozmytych (FDW, Fuzzy Data Warehouse). Hurtownia danych rozmytych stanowi repozytorium danych, które przechowuje zarówno dane precyzyjne, jak i dane rozmyte oraz pozwala na klasyczne i rozmyte przetwarzanie zgromadzonych w niej danych. W artykule zebrano najważniejsze cechy funkcjonalne systemu FDW oraz wykonanej przez autorów aplikacji analitycznej FDW Browser, należącej do klasy narzędzi eksploracji danych Fuzzy-OLAP.
EN
Modern analytical tools increasingly make use of new ways of data analysis that base on fuzzy reasoning and fuzzy processing of information. In the paper, we present a Fuzzy Data Warehouse system (FDW), which we have designed and developed. Fuzzy Data Warehouse (FDW) is a data repository, which contains fuzzy data and allows a fuzzy processing of the data. In the paper, we focus on the most important functional features of the FDW system and our newly developed FDW Browser, which is an analytical application adhering to the Fuzzy-OLAP class of data exploration tools.
Wydawca

Czasopismo
Rocznik
Strony
489-504
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
Bibliografia
  • 1. Kimball R., Reeves L., Margy R., Thomthwaite W.: The Data Warehouse Lifecycle Toolkit John Wiley & Sons, 1998.
  • 2. Ponniah P.: Data Warehousing Fundamentals. A Comprehensive Guide for IT Professionals. John Wiley and Sons, 2001.
  • 3. Zadeh L.A.: Fuzzy sets. Information and Control. 1965,8 (3), s. 338-353.
  • 4. Tang X., Chen G.: A complete set of fuzzy relational algebraic operators in fuzzy relational databases. Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, 2004, s. 565-569.
  • 5. Bose P., Pivert O.: SQLf: A Relational Database Language for Fuzzy Querying. IEEE Transactions on Fuzzy Systems. 1995, Vol. 3, No. 1.
  • 6. Kacprzyk J., Zadrożny S.: SQLf and FQUERY for Access. IFSA World Congress and 20th NAFIPS International Conference, 2001, s. 2464-2469.
  • 7. Małysiak B.: Fuzzy Values in SQL Queries Submitted to Databases. Studia Informatica. Vol. 24, No. 2A(53), s. 179-190, Gliwice 2003.
  • 8. Małysiak B., Mrozek D., Kozielski S.: Processing Fuzzy SQL Queries with Fiat, Context-Dependent and Multidimensional Membership Functions. Proc. of 4th IASTED International Conference on Computational Intelligence (CI 2005), Calgary, Canada. ACTA Press, 2005, s. 36-41.
  • 9. Chaudhuri S., Ganjam K., Ganti V., Motwani R.: Robust and efficient fuzzy match for online data cleaning. Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego, California, 2003, s. 313-324.
  • 10. Hua-Yang Lin, Ping-Yu Hsu, Gwo-Ji Sheen: A fuzzy-based decision-making procedure for data warehouse system selection. An International Journal of Expert Systems with Applications. 2007, s. 939-953.
  • 11. Perez D., Somodevilla M.J., Pineda I.H.: Fuzzy Spatial Data Warehouse: A Multidimensional Model. 8th Mexican International Conference on Current Trends in Computer Science, 2007, s. 3-9.
  • 12. Fasel D., Zumstein D.: A Fuzzy Data Warehouse Approach for Web Analytics. LNCS, Vol. 5736, sp. 276-285. Springer, Heidelberg 2009.
  • 13. Bouchon-Meunier B., Yager R.R., Zadeh L.A.: Fuzzy logic and soft computing. Advances in Fuzzy Systems, Application and Theory vol. 4, Singapore 1995.
  • 14. Dubois D., Prade H.: Fundamentals of fuzzy sets. Kluwer Academic Publisher, 2000.
  • 15. Małysiak-Mrozek B., Mrozek D., Kozielski S.: Data Grouping Process in Extended SQL Language Containing Fuzzy Elements. Advances in Intelligent and Soft Computing Vol. 59, Springer Verlag GmBH, 2009, s. 247-256.
  • 16. MacQueen J.B.: Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1967, vol. 1, s. 281-297.
  • 17. Małysiak-Mrozek B., Mrozek D., Kozielski S.: Processing of Crisp and Fuzzy Measures in the Fuzzy Data Warehouse for Global Natural Resources. LNAI, Springer, Heidelberg 2010, w publikacji.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0046-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.