Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a neural network approach to determine 2D inverse modeling of a buried structure from gravity anomaly profile. The results of the applied neural network method are compared with the results of two other methods, least-squares minimization and the simple method. Sphere, horizontal cylinder and vertical cylinder and their gravity effects are considered as the synthetic models and the synthetic data, respectively. The synthetic data are also corrupted with noise to evaluate the capability of the methods. Then the Dehloran bitumen map in Iran is chosen as a real data application. Anomaly value of the cross-section, which is taken from the gravity anomaly map of Dehloran bitumen, is very close to those obtained from these methods.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
317-336
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
autor
autor
autor
autor
- Faculty of Mining Engineering, University of Tehran, Iran, Abedi_95@yahoo.com
Bibliografia
- Abdelrahman, E.M., A.I. Bayoumi, Y.E. Abdelhady, M.M. Gobashy, and H.M. El-Araby (1989), Gravity interpretation using correlation factors between successive least-squares residual anomalies, Geophysics 54, 1614-1621,
- Albora, A.M., O.N. Ucan, A. Özmen, and T. Ozkan (2001a), Separation of Bouquer anomaly map using cellular neural network, J. Appl. Geophys. 46, 129-142,
- Albora, A.M., A. Özmen, and O.N. Ucan (2001b), Residual separation of magnetic fields using a cellular neural network approach, Pure Appl. Geophys. 158, 9-10, 1797-1818, Asfahani, J., and M. Tlas (2008), An automatic method of direct interpretation of residual gravity anomaly profiles due to spheres and cylinders, Pure Appl.Geophys. 165, 5, 981-994,
- Chua, L.O., and L. Yang (1988), Cellular neural networks: Theory, IEEE Trans. Circuits Syst. 35, 10, 1257-1272,
- Eslam, E., A. Salem, and K. Ushijima (2001), Detection of cavities and tunnels from gravity data using a neural network, Explor. Geophys. 32, 204-208,
- Essa, K.S. (2007), A simple formula for shape and depth determination from residual gravity anomalies, Acta Geophys. 55, 2, 182-190,
- Hajian, A.R. (2004), Depth estimation of gravity data by neural network, M. Sc. thesis, Tehran University, Iran (unpublished).
- Osman, O., A.A. Muhittin, and O.N. Ucan (2006), A new approach for residual gravity anomaly profile interpretations: Forced Neural Network (FNN), Ann. Geofis. 49, 6, http://hdl.handle.net/2122/3504.
- Osman, O., A.A. Muhittin, and O.N. Ucan (2007), Forward modeling with Forced Neural Networks for gravity anomaly profile, Math. Geol. 39, 593-605,
- Salem, A., D. Ravat, R. Johnson, and K. Ushijima (2001), Detection of buried steel drums from magnetic anomaly data using a supervised neural network, J. Environ. Eng. Geophys. 6, 115-122,
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0037-0015