Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2010 | Vol. 58, no. 2 | 215-243
Tytuł artykułu

Alternative expressions for gravity gradients in local north-oriented frame and tensor spherical harmonics

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The traditional expressions for gravity gradients in local northoriented frame and tensor spherical harmonics have complicated forms involved with first- and second-order derivatives of spherical harmonics and also singular terms. In this paper we present alternative expressions for these quantities, which are simpler and contain no singular terms. The presented formulas are useful for those disciplines of geosciences which are involved with potential theory, tensor spherical harmonics and second- order derivatives of spherical harmonic series in the local northoriented frame. A simple numerical test on the solution of the gradiometric boundary value problems presents the correctness of these new expressions and ability of the solutions to continue the gravity gradients from satellite level down to sea level using spherical harmonics.
Wydawca

Czasopismo
Rocznik
Strony
215-243
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Division of Geodesy, Royal Institute of Technology, Stockholm, Sweden, eshagh@kth.se
Bibliografia
  • Albertella, A., F. Migliaccio, and F. Sans (2002), GOCE: The Earth gravity field by space gradiometry, Celest. Mech. Dyn. Astr. 83, 1-4, 1-15
  • Backus, G.E. (1967), Converting vector and tensor equations to scalar equations in spherical coordinates, Geophys. J. Roy. Astron. Soc. 13, 71-101.
  • Balmino, G., F. Perosanz, R. Rummel, N. Sneeuw, H. Sünkel, and P. Woodworth (1998), European views on dedicated gravity field missions: GRACE and GOCE, An Earth Sciences Division Consultation Document, ESA, ESDMAG-REP-CON-001.
  • Balmino, G., F. Perosanz, R. Rummel, N. Sneeuw, and H. Sünkel (2001), CHAMP, GRACE and GOCE: Mission concepts and simulations, Boll. Geofis.Teor. Appl. 40, 3-4, 309-320.
  • Clenshaw, C.W. (1955), A note on the summation of Chebychev series, MTAC 9, 118-120.
  • ESA (1999), Gravity field and steady-state ocean circulation explorer, Report for mission selection, ESA Publications Division, ESA SP-1233(1), 217 pp.
  • Eshagh, M. (2008), Non-singular expressions for the vector and the gradient tensor of gravitation in a geocentric spherical frame, Comput. Geosci. 34, 12, 1762-1768,
  • Eshagh, M. (2009), Impact of vectorization on global synthesis and analysis in gradiometry,Acta Geod. Geophys. Hung. 44, 3, 323-342,
  • Freeden, W., T. Gervens, and M. Schreiner (1994), Tensor spherical harmonics and tensor spherical splines, Manus. Geod. 19, 70-100.
  • Ilk, K.H. (1983), Ein Eitrag zür Dynamik Ausgedehnter Körper-Gravitations- Wechselwirkung (A contribution to the dynamics of extended-body gravitational interaction), Deutsche Geodätische Kommission, Reihe C, Heft 288, München.
  • James, R.W. (1976), New tensor spherical harmonics, for application to the partial differential equations of mathematical physics, Phi. Trans. Roy. Soc. Lond. A 281, 1302, 195-221,
  • Koop, R. (1993), Global gravity field modelling using satellite gravity gradiometry, Publ. Geodesy, New Series 38, Netherland Geodetic Commission, Delft.
  • Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson (1998), Geopotential model EGM96, NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt.
  • Martinec, Z. (2003), Green’s function solution to spherical gradiometric boundaryvalue problems, J. Geod. 77, 1-2, 41-49,.
  • Petrovskaya, M.S., and A.N. Vershkov (2006), Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames, J. Geod. 80, 3, 117-127,
  • Petrovskaya, M.S., and A.N. Vershkov (2008), Development of the second-order derivatives of the Earth’s potential in the local north-oriented reference frame in orthogonal series of modified spherical harmonics, J. Geod. 82, 12, 929-944, .
  • Reed, G.B. (1973), Application of kinematical geodesy for determining the short wave length components of the gravity field by satellite gradiometer, Ohio State University, Dept. of Geod. Sciences, Rep. No. 201, Columbus, Ohio.
  • Regge, T., and J.A. Wheeler (1957), Stability of a Schwarzschild singularity, Phys. Rev. 108, 4, 1063-1069, DOI: 10.1103/PhysRev.108.1063.
  • Rummel, R., and M. van Gelderen (1992), Spectral analysis of the full gravity tensor, Geophys. J. Int. 111, 1, 159-169,
  • Rummel, R., F. Sans, M. Gelderen, R. Koop, E. Schrama, M. Brovelli, F. Migiliaccio, and F. Sacerdote (1993), Spherical harmonic analysis of satellite gradiometry, Publ. Geodesy, New Series 39, Netherlands Geodetic Commission, Delft.
  • Schreiner, M. (1994), Tensor spherical harmonics and their application in satellite gradiometry, Ph.D. Thesis, Fachbereich Mathematik, University of Kaiserslautren.
  • Tscherning, C.C., and K. Poder (1982), Some geodetic applications of Clenshaw summation, B. Geod. Sci. A. 41, 4, 348-375.
  • Van Gelderen, M., and R. Rummel (2001), The solution of the general geodetic boundary value problem by least squares, J. Geod. 75, 1, 1-11,
  • Van Gelderen, M., and R. Rummel (2002), Corrections to “The solution of the general geodetic boundary value problem by least squares”, J. Geod. 76, 2,121-122,
  • Zerilli, F.J. (1970), Tensor harmonics in canonical form for gravitational radiation and other applications, J. Math. Phys. 11, 7, 2203-2208,
  • Zielinski, J.B., and M.S. Petrovskaya (2003), The possibility of the calibration/validation of the GOCE data with the balloon-borne gradiometer, Adv. Geosci. 1, 149-153.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0037-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.