Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 36, nr 2 | 76-81
Tytuł artykułu

Thermal diffusivity of RE2Zr2O7 - type ceramic powders intended for TBCs deposited by APS

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper is to provide overall characteristics of the Laser-Flash method and to determine the thermal diffusivity of powders intended for thermal spraying of thermal barrier coatings (TBC) of new type by air plasma spray (APS). Lanthanum, samarium, neodymium and gadolinium zirconates based powders with a pyrochlore structure and a general formula RE2Zr2O7 were used as the research material. Design/methodology/approach: The scope of the study encompassed thermal diffusivity tests of zirconium powders with the laser-flash method using the Netzsch LFA 427 apparatus for direct measurement of diffusivity. The scope of measured temperature ranged from 25°C to 1000°C (25, 250, 500, 750 and 1000°C). Every measurement point was repeated three times in order to obtain an average value. Findings: The studies conducted have enabled determining the value of thermal diffusivity of the material analyzed in the form of powder within a wide range of temperature. Research limitations/implications: The studies conducted suggest the necessity for verification of the obtained results for analogical coatings of the TBC type in order to determine the influence of the spraying process on the thermal diffusivity of the powders examined. Practical implications: The research results obtained provide a basis for further research on the base material and in particular, on the influence of porosity on thermal diffusivity. Originality/value: The original value presented in the paper is the information regarding the new type of ceramic materials intended for thermal spraying of TBCs.
Wydawca

Rocznik
Strony
76-81
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
  • Department of Materials Science, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, grzegorz.moskal@polsl.pl
Bibliografia
  • [1] P.G. Bison, S. Marinetti, A. Mazzoldi, C. Grinzato, E. Bressan, Cross-comparison of thermal diffusivity measurements by thermal methods, Infrared Physics and Technology 43/3 (2002) 127-132.
  • [2] D.E. Stroe, P.S. Gaal, The Effect of the Surrounding Medium and Its Pressure on Data Obtained in Thermal Diffusivity Measurements Using the Flash, International Journal of Thermophysics 24/4 (2003) 1137-1144.
  • [3] Netzsch - Laser Flash Apparatus LFA 427 for the measurement of thermal diffusivity.
  • [4] W.J. Lackey, D.P. Stinton, G.A. Cerny, A.C. Schaffhauser, L.L. Fehrenbacher, Ceramic coatings for advanced heat engines - a review and projection, Advanced Ceramic Materials 2/1 (1987) 24-30.
  • [5] M. Konter, M. Thumann, Materials and manufacturing of advanced industrial gas turbine components, Journal of Materials Processing Technology 92-117 (2001) 386-390.
  • [6] D. Stover, C. Funke, Directions of the development of thermal barrier coatings in energy applications, Journal of Materials Processing Technology 92-93 (1999) 195-202.
  • [7] J.F. Li, H.L. Liao, C.X. Ding, C. Coddet, Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments, Journal of Materials Processing Technology 160 (2005) 34-42.
  • [8] M. Hetmańczyk, L. Swadźba, B. Mendala, Advanced Materials and Protective Coatings in Aero-Engines Application, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 372-381.
  • [9] J.T. DeMasi-Marcin, D.K. Gupta, Protective coatings in the gas turbine engine, Surface and Coating Technology 68/69 (1994) 1-9.
  • [10] J. Wigren, L. Pejryd, Thermal barrier coatings-why, how, where and where to, thermal spray: meeting the challenges of the 21st century, in: C. Coddet (Ed.), Proceedings of the 15th International Thermal Spray Conference, ASM International, 1998, 1531-1542.
  • [11] L. Swadźba, G. Moskal, B. Mendala, T. Gancarczyk, Characterization of APS TBC system during isothermal oxidation at 1110°C, Archives of Materials Science and Engineering 28/12 (2007) 757-764.
  • [12] G. Moskal, Effect of TBC on oxidation behaviour of γ-TiAl based alloy, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 31-34.
  • [13] G. Moskal, L. Swadźba, T. Rzychoń, Measurement of residual stress in plasma-sprayed TBC with a gradient of porosity and chemical composition, Journal of Achievements in Materials and Manufacturing Engineering, 22/2 (2007) 31-34.
  • [14] L. Swadźba, G. Moskal, B. Mendala, T. Gancarczyk, Characterization of air plasma sprayed TBC coating during isothermal oxidation at 1100ºC, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 81-84.
  • [15] M. J. Maloney, U.S. Patent No. 6,117,560, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0034-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.