Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 36, nr 1 | 20-27
Tytuł artykułu

Structure of the copper under controlled deformation path conditions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: One of the methods of plastic deformation under complex deformation path conditions is compression with oscillatory torsion. The observable effects in the form of changing force parameters and structure changes confirm the possibility of deformation to a value many times higher than in the case of methods traditionally applied for forming. This article presents the results of the influence of compression with oscillatory torsion on structural phenomena occurring in copper deformed in such a way. Design/methodology/approach: The examinations were conducted at a compression/oscillatory torsion test stand. The structural examinations were conducted with the use of light and electron microscopy. Findings: In experimental investigations, a reduction of unit pressures was observed when compared to conventional compression. The structural examinations indicated substantial differences in the mechanisms of plastic deformation conducted in both conventional and combined way. Research limitations/implications: There are premises which show that a metallic material of a nanometric structure can be obtained in this way (top-down method), by the accumulation of great plastic deformation. Metallic materials characterized by grain size below 100nm are distinguished by unconventional properties. Further examinations should focus on conducting experiments in a way that would enable grain size reduction to a nanometric size. This will enable the cumulation of greater deformation in the material. Originality/value: The method of compression with oscillatory torsion is an original method developed at the Silesian University of Technology, owing to which it is possible to obtain high deformation values (SPD) without risking the loss of cohesion of the material. Thorough understanding of the changes taking place in the structure of metals subjected to compression with oscillatory torsion will allow the optimal choice of process parameters in order to achieve a gradual grain size reduction.
Wydawca

Rocznik
Strony
20-27
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • Faculty of Materials Science and Metallurgy; Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, dariusz.kuc@polsl.pl
Bibliografia
  • [1] I.V. Alexandrov, R.Z. Valiev, Nanostructures from severe plastic deformation and mechanisms of large-strain work hardening, Nanonstructured Materials 12 (1999) 709-712.
  • [2] B.S. Altan, G. Purcek, I. Miskioglu, An upper-bound analysis for equal-channel nagular extrusion, Journal of Materials Processing Technology 168 (2005) 137-146.
  • [3] A. Belyakov, R. Kaibyshev, Structural changes of ferritic stainless steel during severe plastic deformation, Nanostructured Materials 6 (1995) 893-896.
  • [4] W. Bochniak, A. Korbel, Type Forming: forging of metals under complex conditions of the process, Journal of Materials Processing Technology 134 (2003) 120-134.
  • [5] W. Bochniak, K. Marszowski, A. Korbel, Theoretical and practical aspects of the production of thin-walled tubes by the KOBO method, Journal of Materials Processing Technology 169 (2005) 44-53.
  • [6] U. Chakkingal, P.F. Thomson, Development of micro-structure and texture during high temperature equel channel angular extrusion of aluminium, Journal of Materials Processing Technology 117 (2001) 169-177.
  • [7] Z.H. Chen, L.C. Chan, T.C. Lee, C.Y. Tang, An investigation on the formation and propagation of shear band in fine-blanking process, Journal of Materials Processing Technology 138 (2003) 610-614.
  • [8] S.V. Dobatkin, A.M. Arsenkin, M.A. Popov, Production of bulk metallic nano- and submicrocrytalline materials by the method of severe plastic deformation, Metal Science and Heat Treatment 47 (2005) 188-192.
  • [9] D. Ferguson, W. Chen, R. Kuziak, S. Zając, New developments in the field of physical simulation of thermomechanical processing, Proceedings of the 5th Scientific International Conference “Materials Forming”, Kraków, 2002, 599-602.
  • [10] F. Grosman, J. Pawlicki, Concepts of technological applications in controlled deformation of materials, Acta Metallurgica Slovaca R 8/1 (2002) 178-182.
  • [11] F. Grosman, J. Pawlicki, Method of testing materials sensitivity on the strain path changes, Proceedings of the 10th Scientific International Conference “Plasticity of Materials”, Podlesice, 2003 (CD-ROM).
  • [12] K. Hyoung Seop, Finite element analysis of high pressure torsion processing, Journal of Materials Processing Technology 113 (2001) 617-621.
  • [13] K. Hyoung Seop, S. Min Hong, H. Sun Ig, Plastic deformation analysis of metals during equal channel angular pressing, Journal of Materials Processing Technology 113 (2001) 622-626.
  • [14] K. Hyoung Seop, H. Sun Ig, L. Young Shin, A. Dubravina, I. Alexander, Deformation behaviour of copper during a high pressure torsion process, Journal of Materials Processing Technology 2 (2003) 334-337.
  • [15] O.A. Kaibyshev, Grain refinement in commercial alloys due to high plastic deformations, Journal of Materials Processing Technology 117 (2001) 300-306.
  • [16] K.J. Kurzydlowski, M. Richert, On the mechanisms of nanograins formation in cold–plastic deformation conditions, Materials Science and Engineering 4 (2005) 189-191.
  • [17] Y. Lee, B.M. Kim, K.J. Park, S.W. Seo, O. Min, A study for the constitutive equation of carbon steel subjected to large strains, high temperatures and high strain rates, Journal of Materials Processing Technology 130-131 (2002) 181-188.
  • [18] C.J. Luis Perez, P. Gonzales, Y. Garces, Equel channel angular extrusion in a commercial Al-Mn alloy, Journal of Materials Processing Technology 143-144 (2003) 506-511.
  • [19] C.J. Luis Perez, R. Luri-Irigoyen, D. Gaston-Ochoa, Finite element modelling of an Al-Mn alloy by equal-channel angular extrusion, Journal of Materials Processing Technology 153-154 (2004) 846-852.
  • [20] J. Mao, S.B. Kang, J.O. Park, Grain refinement, thermal stability and tensile properties of 2024 aluminium alloy after equal-channel angular pressing, Journal of Materials Processing Technology 159 (2005) 314-320.
  • [21] J.P. Mathieu, S. Suwas, A. Eberhardt, L.S. Toth, P. Moll, A new design for equal channel angular extrusion, Journal of Materials Processing Technology 173 (2006) 29-33.
  • [22] G. Niewielski, D. Kuc, K. Rodak, F. Grosman, J. Pawlicki, Influence of strain on the copper structure under controlled deformation path conditions, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 109-112.
  • [23] G. Purcek, S.A. Burhanettin, I. Miskogli, H.O. Pey, Processing of eutectic Zn-5%Al alloy by equel-channel angular pressing, Journal of Materials Processing Technology 148 (2004) 279-287.
  • [24] M. Richert, A. Korbel, The effect of strain localization on mechanical properties of A199,992 in the range of large deformation, Journal of Materials Processing Technology 53 (1995) 331-340.
  • [25] S. Rusz, H. Dyja, The influence of technological parameters on the rotary pressing process, Journal of Materials Processing Technology 157-158 (2004) 604-608.
  • [26] G. Salishchev, R. Zaripova, R. Galeev, O. Valiakhmetov, Nanocrystalline structure formation during severe plastic deformation in metals and their deformation behaviour, Nanostructured Materials 6 (1995) 913-916.
  • [27] V.A. Teplov, V.P. Pilugin, V.S. Gaviko, E.G. Cheryshov, Nanacrystalline structure of non-equilibrium Fe-Cu alloys obteined by severe plastic deformation under pressure, Nanostructured Materials 6 (1995) 437-440.
  • [28] R Valiev, A. Korznikov, V. Alexander, Nanomaterials produced by severe plastic deformation, Annales de Chimie Science des Materiaux 27 (2002) 1-2.
  • [29] R.Z. Valiev, R.K. Islamgaliev, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 106-107.
  • [30] Z.F. Zhang, S.D. Wu, Y.J. Li, S.M. Liu, Z.G. Wang, Cyclic deformation and fatique properties of Al-0.6wt.%Cu alloy produced by equal channel angular pressing, Materials Science and Engineering A 412 (2005) 279-286.
  • [31] L.J. Zheng, H.X. Li, M.F. Hashmi, C.Q. Chen, Y. Zhang, M.G. Zeng, Evolution of microstructure and strengthening of 7050 Al alloy by ECAP combined with heat-treatment, Journal of Materials Processing Technology 171 (2006) 100-107.
  • [32] A.P. Zhilyaev, Experimental parameters influencing grain refinement and microstructural evolutin during high - pressure torsion, Acta Materialia 51 (2003) 753-765.
  • [33] G. Niewielski, D. Kuc, K. Rodak, F. Grosman, J. Pawlicki, Influence of strain on the copper structure under controlled deformation path conditions, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 109-112.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0034-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.