Czasopismo
2008
|
Vol. 56, no. 2
|
440-454
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Only with satellites it is possible to cover the entire Earth densely with gravity field related measurements of uniform quality within a short period of time. How-ever, due to the altitude of the satellite orbits, the signals of individual local masses are strongly damped. Based on the approach of Petrovskaya and Vershkov we determine the gravity gradient tensor directly from the spherical harmonic coefficients of the recent EIGEN-GL04C combined model of the GRACE satellite mission. Satellite gradiometry can be used as a complementary tool to gravity and geoid information in interpreting the general geophysical and geodynamical features of the Earth. Due to the high altitude of the satellite, the effects of the topography and the internal masses of the Earth are strongly damped. However, the gradiometer data, which are nothing else than the second order spatial derivatives of the gravity potential, efficiently counteract signal attenuation at the low and medium frequencies. In this article we review the procedure for estimating the gravity gradient components directly from spherical harmonics coefficients. Then we apply this method as a case study for the interpretation of possible geophysical or geodynamical patterns in Iran. We found strong correlations between the cross-components of the gravity gradient tensor and the components of the deflection of vertical, and we show that this result agrees with theory. Also, strong correlations of the gravity anomaly, geoid model and a digital elevation model were found with the diagonal elements of the gradient tensor.
Twórcy
autor
autor
autor
- Department of Geodesy and Geomatics, Zanjan University, Zanjan, Iran, ramin@infra.kth.se
Bibliografia
- Domenico, N. (1994), The SEG Museum's torsion balance, The Leading Edge 13, 683-686.
- Eötvös, R. Von (1908), Bestimmung der Gradienten der schwerktaft und ihere niveauflächen mit hilfe der drehwaage, Verhandl. d. XV. allg. Konferenz der Internat. Erdmessung 1906, Bd. I, Budapest, 337-395.
- Förste, C., F. Flechtner, R. Schmidt, U. Meyer, R. Stubenvoll, F. Barthelmes, R. König, K.H. Neumayer, M. Rothacher, Ch. Reigber, R. Biancale, S. Bruinsma, J.M. Lemoine, and J.C. Raimondo (2005), A new high resolution global gravity model derived from combination of GRACE and CHAMP mission and altimetry-gravimetry surface gravity data, Poster g004 EGU-A-04561 presented at EGU General Assembly 2005, Vienna, Austria, 24-29.
- Hammond, S., and C. Murphy (2003), Air-FTG: Bell geospace's airborne gravity gradiometer - A description and case study, J. Geophys. 68, 4, 24-26.
- Hatch, D. (2004), Evaluation of a full tensor gravity gradiometer for kimberlite exploration, Geoscience Australia Record 18, 73-79.
- Isles, D., and I. Moody (2004), Examples of Falcon(tm) data from diamond exploration projects in Northern Australia, Geoscience Australia Record 18, 1-5.
- Kiamehr, R., and M. Eshagh (2008), EGMlab: a scientific software for determining the gravity field parameters and gravity gradients via global geopotential models, J. Comput. Geosci. (submitted).
- Kiamehr, R., and L.E. Sjöberg (2006), Impact of the precise geoid model in studying tectonic structures - A case study in Iran, J. Geodyn. 42, 1-3, 1-11, DOI: 10.1016/ j.jog.2006.04.001.
- Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olsen (1998), The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt.
- Mickus, K.L., and J.H. Hinojosa (2001), The complete gravity gradient tensor derived from vertical components of gravity: a Fourier transform technique, J. Appl. Geophys. 46, 159-174.
- Pedersen, L.B., and T.M. Rasmussen (1990), The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps, Geophysics 55, 1558-1599.
- Petrovskaya, M.S., and A.N. Vershkov (2006), Non-singular expressions for the gravity gradients in the local north-oriented and orbital references frames, J. Geodesy 80, 117-127.
- Reed, G.B. (1973), Application of kinematical geodesy for determining the shorts wave length components of the gravity field by satellite gradiometry, Dept. Geodetic Science, Rep. No. 201, The Ohio State University, Columbus, OH.
- Talwani, P., and W.T. Schaeffer (2001), Recurrence rates of large earthquakes in the South Carolina Coastal Plain based on paleoliquefaction data, J. Geophys. Res. 106, 6621-6642.
- Wang, Y.M. (2000), Predicting bathymetry from the Earth's gravity gradient anomalies, Marine Geodesy 23, 4, 251-258.
- Wenzel, H.G. (1998), Ultra-high degree geopotential models GPM98A and GPM98B to degree 1800, Finnish Geodetic Institute, Masala, Report 98:4, 71-80.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0025-0017