Czasopismo
2006
|
Vol. 54, no. 2
|
126-141
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Two techniques have been presented for the delineation of boundaries from smooth models obtained by smooth inversion techniques of geoelectrical sounding data, such as straightforward inversion scheme, Occam’s and Zohdy’s methods. The smooth model consists of a large number of equally spaced layers, wherein the real geological boundaries are missing. The techniques proposed here suppress the geologically irrelevant boundaries and support the real structural boundaries present in the geoelectrical data. In the first technique, solution of linear inverse problem is improved iteratively through weighted minimum norm inverse, the weight being taken from the current solution. The technique is referred as Iterative Straightfor-ward Inversion Scheme. The second method is analytical, based on the application of smoothing filter, referred in the literature as edge-preserving smoothing. A few examples of theoretical magnetotelluric, dc resistivity and field sounding data have been presented to demonstrate the capabilities of the techniques. The methodologies also reduce the conspicuous oscillations in the smooth solutions caused by the con-version of sharp boundaries to the smooth ones.
Słowa kluczowe
Twórcy
autor
- Department of Earth Sciences, Indian Institute of Technology Roorkee Roorkee-247667, India, mohdfes@iitr.ernet.in
Bibliografia
- Anderson, W.L., 1975, Improved digital filters for evaluating Fourier and Hankel transform integrals, USGS Report GD, 75-012.
- Constable, S.C., R.L. Parker and C.G. Constable, 1987, Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics 52, 289-300.
- Flathe, H., 1955, A practical method of calculating geoelectrical model graphs for horizontally stratified media, Geophys. Prospect. 3, 268-294.
- Gai-Shan, Z., 1985, Asymptotic formula of the transform function for the layered earth potential and its application to the resistivity sounding data, Geophysics 50, 1513-1514.
- Ghosh, D.P., 1971a, The application of linear filter theory to the direct interpretation of geoelectrical sounding measurements, Geophys. Prospect. 19, 192-217.
- Ghosh, D.P., 1971b, Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth, Geophys. Prospect. 19, 769-775.
- Gupta, P.K., Sri Niwas and V.K. Gaur, 1996, Straightfoward inversion scheme (SIS) for one-dimensional magnetotelluric data, Proc. Indian Acad. Sci. (Earth Planet Sci.) 105,413-429.
- Gupta, P.K., Sri Niwas and V.K. Gaur, 1997, Straightfoward inversion of vertical electrical sounding data, Geophysics 62, 775-785.
- Guptasarma, O., 1982, Optimization of short digital linear filters for increased accuracy, Geophys. Prospect. 30, 501-514.
- Hobbs, B.A., and C.C. Dumitrescu, 1997, One-dimensinal magnetotelluric inversion using an adaptation of Zodhy's resistivity method, Geophys. Prospect. 45, 1027-1044.
- Inman, J.R., 1975, Resistivity inversion with ridge regression, Geophysics 40, 798-817. Inman, J.R., J. Ryu and S.H. Ward, 1973, Resistivity inversion, Geophysics 38, 1088-1108.
- Johansen, H.K., 1977, A man/computer interpretation system for resistivity sounding over a horizontally stratified earth, Geophys. Prospect. 25, 667-691
- Jupp, D.L.B., and K. Vozoff, 1975, Stable methods for the inversion of geophysical data, Geophys.
- J. Roy. astron. Soc. 42, 957-976.
- Kunetz, G., 1966, Principles of Direct Current Resistivity Prospecting, Borntraeger, Berlin.
- Langer, R.E., 1933, An inverse problem in differential equation, Am. Math. Soc. Bull. 39, 814-820.
- Last, B.J., and K. Kubik, 1983, Compact gravity inversion, Geophysics 48, 713-721.
- Mooney, H.M., E. Orellana, H. Pickett and L. Tornpeim, 1966, A resistivity computation methods for layered earth models, Geophysics 31,192-203.
- Muiuane, E., A. Muiuane and L.B. Pedersen, 1999, Automatic 1D interpretation of DC resistivity sounding data, J. Appl. Geophysics 42, 35-45.
- O'Neill, D.J., 1975, Improved linear filter coefficients for application in apparent resistivity computations, Bull. Austral. Soc. Expl. Geophys. 6, 104-109.
- Onodera, S., 1963, Numerical analysis of relative resistivity for horizontally layered earth, Geophysics 28, 222-231.
- Pedersen, J., and J.F. Hermance, 1986, Least squares inversion of one-dimensional magnetotelluric data: An assessment of procedures employed by Brown University, Survey in Geophysics 8, 187-231.
- Pekeris, C.L., 1940, Direct method of interpretation in resistivity prospecting, Geophysics 5, 31-46.
- Portniaguine, O., and M.S. Zhdanov, 1999, Focussing geophysical inversion images, Geophysics 64, 874-887.
- Roman, I., 1963, The kernel function in the surface potential for horizontally stratified earth, Geophysics 28, 232-249.
- Santini, R., and R. Zambrano, 1981, A numerical method of calculating the kernel function from Schlumberger apparent resistivity data, Geophys. Prospect. 29, 108-127.
- Sri Niwas, and M. Israil, 1986, Computation of apparent resistivities using an exponentialapproximation of kernel function, Geophysics 51, 1594-1602.
- Stefanescu, S.S., 1930, Sur la distribution 'electrique antour d'une prise deterre ponctuelledoms un terrain a counha horizontales homogenes et isotropes, Le Journal de Physique et le Radium 7, series 1.
- Van Dam, J.C., 1964, A simple method for the calculation of standard graphs to be used in geoelectrical prospecting, Ph.D. Thesis, Delft Techn. University (unpublished)
- Vozoff, K., 1958, Numerical resistivity analysis - general inhomogeneity, Geophysics 23, 536-556.
- Yi Luo, M. Marhoon, S.A. Dossary and M. Alfaraj, 2002, Edge-presserving smoothing and applications, The Leading Edge 21, 136-158.
- Zohdy, A.A.R., 1989, A new method for the interpretation of Schlumberger and Wenner sounding curves, Geophysics 54, 245-253.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0014-0038