Warianty tytułu
Języki publikacji
Abstrakty
The potential maximum retention, S, of the Soil Conservation Service Curve Number (SCS-CN) method (SCS, 1956) was derived for a large set of published infiltration data ranging from Plainfield sand to Yololight clay using the relations between psi (negative pressure) and theta (moisture content) and between K (hydraulic conductivity) and theta. The physical significance of S is explained using the diffusion term of the linearized, Fokker-Planck equation for infiltration, which relates S to the storage and transmission properties of the soil. The s-values exhibit a strong looped relationship with the initial moisture content, analogous to that for curve numbers for three antecedent moisture conditions. The variations of S in vertical infiltration is also explained and discussed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
179-202
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
- National Institute of Hydrology, Roorkee-247 667, India, skmishra@cc.nih.ernet.in
autor
- Department of Civil and Environmental Engineering Louisiana, State of University, Baton Rouge, Louisiana 70803-6405, USA, cesing@lsu.edu
Bibliografia
- 1. Black, T.A., W.R. Gardner and G.W. Thurtell, 1969, The prediction of evaporation, drainage, and soil water storage for a bare soil, Soil Sci. Soc. Am. Proc. 33, 655-660.
- 2. Bonta, J.V., 1997, Determination of watershed curve number using derived distributions, J. Irrig. and Draing. Engrg., ASCE 123, l, 28-36.
- 3. Campbell, G.S., 1974, A simple method for determining unsaturated conductivity from moisture retention data, Soil Science 117, 6, 311-314.
- 4. Chang, K.P., and J.H. Sonu, 1993, Capillary hysteresis model in unsaturated flow: State of the Korean J. Hydrosciences 4, 33-49.
- 5. Chen, C.-L., 1981, An evaluation of the mathematics and physical significance of the soil conservation service curve number procedure for estimating runoff volume. In: V Singh (ed.), "Rainfall-Runoff Relationship", Water Resources Publications, Littleton Colorado.
- 6. Collis-George, N., 1977, Infiltration equations for simple soil systems, J. Water Resour. Res. 13 395-403.
- 7. Crawford, F.S., 1965, Waves: Berkeley Physics Course, Vol. 3, McGraw-Hill, New York.
- 8. de Souza, P.A., and R.K. Price, 1980, The Saint Venant Equations: A Linearised Analysis, Report No. IT 203, Institute of Hydrology, Wallingford, Sept.
- 9. Elrick, D.E., and D.H. Bowman, 1964, Note on an improved apparatus for soil moisture measurements, Soil Sci. Soc. Am. Proc. 28, 450-453.
- 10. Feddes, R.A., P. Kabat, P.J.T. Van Bakel, J.J.B. Bronswijk and J. Halbertsma, 1988, Model soil water dynamics in the unsaturated zone - State of the art, J. Hydrology 100,69-111.
- 11. Gardener, W.R., D. Hillel and Y. Benzamin, 1970, Post irrigation movement of soil water: I Redistribution, Water Resour. Res. 6(3), 851-61; II. Simultaneous redistribution and evaporation, Water Resour. Res. 6(4), 1148-53.
- 12. Green, R.E., 1962, Infiltration of water into soils as influenced by antecedent moisture, Ph. D Dissertation, Iowa State University, Iowa (unpublished).
- 13. Hawkins, R.H., 1993, Asymptotic determination of runoff curve numbers from data, J. Irrig. an Draing. Engrg., ASCE 119, 2, 334-345.
- 14. Hillel, D., 1976, Soil and Water: Physical Properties and Processes, Academic Press, New York
- 15. Jarvis, N.J., P.E. Jansson, P.E. Dik and I. Messing, 1991, Modeling water and solute transport macroporous soil. I. Model description and sensitivity analysis, J. Soil Sci. 42, 59-70
- 16. Knisel, W.G., 1980, CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems, Conser. Res. Rep., USA 26, 643 p.
- 17. Kundzewicz, Z.W., and J.C.I. Dooge, 1989, Attenuation and phase shift in linear flood routin, J. Hydrol. Sci. 34, l, 21-40.
- 18. Laiberte, G.E., A.T. Corey and R.H. Brooks, 1966, Properties of unsaturated porous media Hydrology 17, Colorado State University, Fort Collins, Colorado.
- 19. Lee, H.W., 1983, Determination of infiltration characteristics of a frozen palouse silt loam soil under simulated rainfall, Ph. D. Dissertation, University of Idaho Graduate School (unpublished).
- 20. Mallants, D., Peng-Hsiang Tseng, M. Vanclooster and J. Feyen, 1998, Predicted drainage for sandy loam soil: sensitivity to hydraulic property description, J. Hydrology 206, 136-14
- 21. Marshall, T.J., J.W. Holmes and C.W. Rose, 1996, Soil Physics, Cambridge University Press, New York.
- 22. McCuen, R.H., 2002, Approach to confidence interval estimation for curve numbers, J. Hydrol Engrg., 71,43-48.
- 23. Mein, R.G., and C.L. Larson, 1971, Modelling the infiltration component of the rainfall-runoff process, Bull. 43, Water Resources Res. Centre, University of Minnesota, Minneapolis.
- 24. Mishra, S.K., and S.M. Seth, 1996, Use of hysteresis for defining the nature of flood wave propagation in natural channels, Hydrologic. Sci. J. 41(2).
- 25. Mishra, S.K., and V.P. Singh, 1999a, Another look at the SCS-CN method, J. Hydrol. Engrg., ASCE 4, 3, 257-264.
- 26. Mishra, S.K., and V.P. Singh, 1999b, Behavior of SCS-CN method in C-Iα*-λ spectrum, Proc. Int. Conf. on Water, Environment, Ecology, Socio-economics, and Health Engineering, Seul Nat. University, Korea, Oct. 18-21.
- 27. Mishra, S.K., and V.P. Singh, 1999c, Hysteresis-based flood wave analysis, J Hydrol. Engrg., ASCE 4, 4, 358-365.
- 28. Mishra, S.K., and V.P. Singh, 2001a, Hysteresis-based flood wave analysis using the concept of strain, J. Hydrological Processes 15, Ref. 176/225.
- 29. Mishra, S.K., and V.P. Singh, 2001b, On Seddon speed formula, J. Hydrol. Sci. (Journal-des Sciences Hydrologiques) IAHS 46, 3, 333-347.
- 30. Mishra, S.K., and V.P. Singh, 2002, SCS-CN-based hydrologic simulation package. Ch. 13 in Mathematical Models in Small Watershed Hydrology. In: V.P. Singh, Frevert and Meyer (eds.), "Water Resources Publications", Littleton, Colorado.
- 31. Mishra, S.K., and V.P. Singh, 2003, SCS-CN method. Part-II: Analytical treatment, Acta Geophys. Pol. 51, l, 107-123.
- 32. Mishra, S.K., M.K. Jain and S.M. Seth, 1997, Characterization of flood waves by rating curves, J. Nordic Hydrology 28(1), 51-64.
- 33. Mishra, S.K., S.R. Kumar and V.P. Singh, 1999, Calibration of a general infiltration model, J. Hydrol. Processes 13, 1691-1718.
- 34. Mockus, V., 1949, Estimation of total (peak rates of) surface run off for individual storms, Exhibit A of Appendix B, Interim Survey Report Grand (Neosho) River Watershed, USDA.
- 35. Mockus, V., 1964, Letter to Orrin Ferris, March 5, In: R.E. Rallison (ed.), "Origin and Evolution of the SCS Runoff Equation", Proc. ACSE Symp. Watershed Management, Boise, Idaho.
- 36. Moore, R.E., 1939, Water conduction from shallow water tables, Hilgardia 12, 383-426. Pedlosky, J., 1979, Geophysical Fluid Dynamics, Springer Verlag, Berlin,
- 37. Phlilip, J.R., 1957, Theory of Infiltration, Chapters l and 4, Soil Sci. 83(5), 345-357.
- 38. Phlilip, J.R., 1969, Theory of Infiltration. In: V.T. Chow (ed.), "Advances in Hydrosciences", Academic Press, New York.
- 39. Philip, J.R., 1974, Recent progress in the solution of nonlinear diffusion equations, Soil Sci. 117, 257-264.
- 40. Ponce, V.M., 1989, Engineering Hydrology: Principles and Practices, Prentice Hall, Englewood Cliffs, New Jersey.
- 41. Ponce, V.M., and R.H. Hawkins, 1996, Run off curve number: Has it reached maturity?, J. Hydrol. Engrg., ASCE 1, 1, 11-19.
- 42. Ponce, V.M, and D.B. Simons, 1977, Shallow wave propagation in open channel flow, J. Hydraul. Div., ASCE 103 (HY12), 1461-1476.
- 43. Ponce, V.M., R.M. Li and D.B. Simons, 1978, Applicability of kinematic and diffusion mode J. Hydraul. Div., ASCE 104 (HY3), 353-360.
- 44. Rallison, R.E., 1980, Origin and evolution of the SCS run off equation, Proc. ASCE Symp. Watershed Management, Boise, Idaho.
- 45. Rankine, M., 1870, On the thermodynamic theory of waves of finite longitudinal disturbance Philos. Trans. Royal Society of London 160, 277-288.
- 46. Singh, V.P., 1997, Kinematic Wave Modeling in Water Resources: Environmental Hydrolog. John Wiley and Sons, New York.
- 47. Singh, V.P., and F.X. Yu, 1990, Derivation of infiltration equation using systems approach J. Irrig. and Drainage Engrg., ASCE 116, 6, 837-857.
- 48. Soil Conservation Service, 1956, 1971, Hydrology, National Engineering Handbook, Suppl. Sect. 4, Ch. 10, Soil Conserv. Service, USA, Washington D.C.
- 49. Todd, D.K., 1980, Groundwater Hydrology, John Wiley and Sons, New York.
- 50. Vanclooster, M., P. Viane, J. Diels and K. Chrismans, 1994, Water and agrochemicals in the soil and vadose environment, Reference and User's Manual, Release 2.0, Institute for Lal and Water Management, Leuven, Belgium.
- 51. Visser, W.C., 1969, An empirical expression for the desorption curve. In: P.E. Rijtemaaa H. Wassnik (eds.), "Water in the Unsaturated Zone", UNESCO, Paris/IAHS, Gentbrugge 329-35.
- 52. Vreugdenhill, C.B., 1972, Mathematical Methods for Flood Waves, Delft Hydraulics Laboratory Research Report S89-IV, August.
- 53. Wagenet, R.J., and J.L. Hutson, 1987, LEACHM: leaching estimation and chemistry mode Continuum Ser. Publ. 2, Water Resource Inst., Cornell Univ., Ithaca, N.Y. 1-80.
- 54. Young, E.G., 1957, Moisture profiles during vertical infiltration, Soil Sc. 84, 283-290.
- 55. Young, E.G., 1964, An infiltration method measuring the hydraulic conductivity of unsaturated porous materials, Soil Sci. 97, 307-311.
- 56. Yu, B., 1998, Theoretical justification of SCS-CN method for runoff estimation, J. Irrig. And Drain. Engrg. 124, 6, 306-310.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0007-0041