Warianty tytułu
Mining outliers in rule knowledge bases
Języki publikacji
Abstrakty
Artykuł przedstawia problematykę wykrywania odchyleń w regułowych bazach wiedzy. Reguły nietypowe, uznawane tu za odchylenia, powinny być przedmiotem analiz ekspertów i inżynierów wiedzy, gdyż mogą wpływać na efektywność wnioskowania w systemach wspomagania decyzji. Autorka prezentuje różne podejścia w znajdowaniu odchyleń w regułach. W artykule ujęto także wykonane eksperymenty wraz z interpretacją wyników.
The paper presents the problem of outlier detection in the rule knowledge bases. Unusual (rare) rules, regarded here as the deviation, should be the subject of analysis experts and knowledge engineers because they can influence the efficiency of inference in decision support systems. The author presents a different approach in finding outliers in the rules. The experiments with their results are also presented in the paper.
Czasopismo
Rocznik
Tom
Strony
479-492
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Uniwersytet Śląski, Instytut Informatyki, ul. Będzińska 39, 41-200 Sosnowiec, Polska, agnieszka.nowak@us.edu.pl
Bibliografia
- 1. Kaufman L., Rousseeuw P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley Sons, New York 1990.
- 2. Koronacki J., Ćwik J.: Statystyczne systemy uczące się. WNT, Warszawa 2005.
- 3. Nowak A.: Złożone bazy wiedzy: struktura i procesy wnioskowania. Rozprawa doktorska, Uniwersytet Śląski, Instytut Informatyki, Katowice 2009.
- 4. Nowak-Brzezińska A., Wakulicz-Deja A.: Wybór miary podobieństwa a efektywność grupowania reguł w złożonych bazach wiedzy. Studia Informatica, Vol. 31, No. 2A(89), Wydawnictwo Politechniki Śląskiej, Gliwice 2010, s. 189-202.
- 5. Nowak-Brzezińska A.: Eksploracja wiedzy a efektywność systemów wspomagania decyzji. Studia Informatica, Vol. 32, No. 2A(96), Wydawnictwo Politechniki Śląskiej, Gliwice2011,s.403-416.
- 6. Pearson R. K.: Mining imperfect data - dealing with contamination and incomplete records. SIAM, I-X, 1-305, 2005.
- 7. Seo S.: A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets. Univeristy of Pittsburgh, 2006.
- 8. Cherednichenko S.: Outlier Detection in Clustering. Master's Thesis, University of Joensuu, Department of Computer Science, 2005.
- 9. Hawkins D.: Identification of Outliers. Chapman and Hall, 1980.
- 10. Pawlak Z., Wiktor M.: Information storage and retrieval system - mathematical foundations. Computation Center Polish Academy of Sciences (CC PAS), Warsaw, Poland 1974.
- 11. Breunig M. M. et.al.: LOF: Identifying Density-Based Local Outliers. KDD 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL6-0016-0077