Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study is to improve classification results of multispectral satellite imagery for supporting flood risk assessment analysis in a catchment area in Cyprus. For this purpose, precipitation and ground spectroradiometric data have been collected and analyzed with innovative statistical analysis methods. Samples of regolith and construction material were in situ collected and examined in the spectroscopy laboratory for their spectral response under consecutive different conditions of humidity. Moreover, reflectance values were extracted from the same targets using Landsat TM/ETM+ images, for drought and humid time periods, using archived meteorological data. The comparison of the results showed that spectral responses for all the specimens were less correlated in cases of substantial humidity, both in laboratory and satellite images. These results were validated with the application of different classification algorithms (ISODATA, maximum likelihood, object based, maximum entropy) to satellite images acquired during time period when precipitation phenomena had been recorded.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
959-984
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
autor
autor
autor
- Department of Civil Engineering and Geomatics, Remote Sensing Lab., Faculty of Engineering and Technology, Cyprus University of Technology, Limassol, Cyprus, dimitrios.alexakis@cut.ac.cy
Bibliografia
- Agapiou, A., D.G. Hadjimitsis , C. Papoutsa, D.D. Alexakis, and G. Papadavid (2011), The importance of accounting for atmospheric effects in the application of NDVI and interpretation of satellite imagery for supporting archaeological research: The case studies of Palaepaphos and Nea Paphos sites in Cyprus, Remote Sens. 3, 12, 2605-2629; DOI: 10.3390/rs3122605.
- Alexakis, D.D., D.G. Hadjimitsis, A. Agapiou, K. Themistokleous, and A. Retalis (2011), Contribution of earth observation to flood risk assessment in Cyprus: the Yialias catchment area in Nicosia. In: Proc. VI EWRA Int. Symp. “Water Engineering and Management in a Changing Environment”, 29 June – 2 July 2011 Catania.
- Arai, K. (1991), Information extraction of inner pixel contents derived from satellite remote sensing imagery data, J. Jpn. Soc. Photogramm. Remote Sens. 30, 4, 30-34.
- Benz, U.C., P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen (2004), Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS J. Photogramm. Remote Sens. 58, 3-4, 239-258, DOI: 10.1016/j.isprsjprs.2003.10.002.
- Bhaskaran, S., S. Paramananda, and M. Ramnarayan (2010), Per-pixel and objectoriented classification methods for mapping urban features using Ikonos satellite data, Appl. Geogr. 30, 4, 650-665, DOI: 10.1016/j.apgeog.2010.01.009.
- Blaschke, T. (2010), Object based image analysis for remote sensing, ISPRS J. Photogramm. Remote Sens. 65, 1, 2-16, DOI: 10.1016/j.isprsjprs.2009.06.004.
- Blumberg, D.G., and G. Zhu (2007), Using a hierarchical multi-resolution mechanism for the classification and semantic extraction of land use maps for Beer-Sheva, Israel, Int. J. Remote Sens. 28, 15, 3273-3289, DOI: 10.1080/01431160600993371.
- Brown, D.G., B.C. Pijanowski, and J.D. Duh (2000), Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA, J. Environ. Manage. 59, 4, 247-263, DOI: 10.1006/jema.2000.0369.
- Congalton, R.G. (1991), A review of assessing the accuracy of classifications of remotely sensed data, Remote Sens. Environ. 37, 1, 35-46, DOI: 10.1016/0034-4257(91)90048-B.
- Congalton, R.G., and K. Green (1999), Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, Boca Raton, 137 pp.
- De Kok, R., A. Buck, T. Schneider, and U. Ammer (2000), Analysis of image objects fromVHR imagery for forest GIS updating in the Bavarian Alps. In: XIX Congress Int. Soc. for Photogrammetry and Remote Sensing (ISPRS), 16-23 July 2000, Amsterdam, Holland, 222-229.
- Du, P., X. Li, W. Cao, Y. Luo, and H. Zhang (2010), Monitoring urban land cover and vegetation change by multi-temporal remote sensing information, Mining Sci. Technol. 20, 6, 922-932, DOI: 10.1016/S1674-5264.
- Eggleton, R.A. (ed.), (2001), The Regolith Glossary: Surficial Geology, Soils and Landscapes, CRC LEME, Canberra, Australia, http://crcleme.org.au/ Pubs/Monographs/BookRegGloss.html.
- Eiumnoh, A., and R.P. Shrestha (2000), Application of DEM data to Landsat image classification: Evaluation in a tropical wet-dry landscape of Thailand, Photogramm. Eng. Remote Sens. 66, 3, 297-1304.
- Foody, G.M. (2002), Status of land cover classification accuracy assessment, Remote Sens. Environ. 80, 1, 185-201, DOI: 10.1016/S0034-4257(01)00295-4.
- Forster, B.C. (1984), Derivation of atmospheric correction procedures for LANDSAT MSS with particular reference to urban data, Int. J. Remote Sens. 5, 5, 799-817, DOI: 10.1080/01431168408948861.
- Gamanya, R., P. De Maeyer, and M. De Dapper (2007), An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization, Expert Syst. Appl. 32, 2, 616-624, DOI: 10.1016/j.eswa.2006.01.055.
- Hadjimitsis, D.G. (2007), The use of satellite remote sensing and GIS for assisting flood risk assessment: a case study of the Agriokalamin Catchment area in Paphos-Cyprus, Proc. SPIE 6742, 67420Z, DOI: 10.1117/12.751855.
- Hadjimitsis, D.G. (2010), Determination of urban growth in catchment areas in Cyprus using multi-temporal remotely sensed data: risk assessment study, Nat. Hazards Earth Syst. Sci. 10, 2235-2240, DOI: 10.5194/nhess-10-2235-2010.
- Hadjimitsis, D.G., and C.R.I. Clayton (2008), The use of an improved atmospheric correction algorithm for removing atmospheric effects from remotely sensed images using an atmosphere-surface simulation and meteorological data, Meteorol. Appl. 15, 3, 381-387, DOI: 10.1002/met.80.
- Hadjimitsis, D.G., and C.R.I. Clayton (2007), The application of the covariance matrix statistical method for removing atmospheric effects from satellite remotely sensed data intended for environmental applications, Proc. SPIE 6749, 674936, DOI: 10.1117/12.751887.
- Hadjimitsis, D.G., C.R.I. Clayton, and V.S. Hope (2004a), An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs, Int. J. Remote Sens. 25, 18, 3651-3674, DOI: 10.1080/01431160310001647993.
- Hadjimitsis, D.G., C.R.I. Clayton, and A. Retalis (2004b), On the darkest pixel atmospheric correction algorithm: a revised procedure applied over satellite remotely sensed images intended for environmental applications, Proc. SPIE 5239, 464, DOI: 10.1117/12.511520.
- Hjuler, M.L., and I.L. Fabricius (2009), Engineering properties of chalk related to diagenetic variations of Upper Cretaceous onshore and offshore chalk in the North Sea area, J. Petrol. Sci. Eng. 68, 3-4, 151-170, DOI: 10.1016/j.petrol.2009.06.005.
- Jaynes, E.T. (1957), Information theory and statistical mechanics, Phys. Rev. 106, 4, 620-630, DOI: 10.1103/PhysRev.106.620.
- Karl, J.W., and B.A. Maurer (2010), Multivariate correlations between imagery and field measurements across scales: comparing pixel aggregation and image segmentation, Landscape Ecol. 25, 4, 591-605, DOI: 10.1007/s10980-009-9439-4.
- Li, W., and Q. Guo (2010), A maximum entropy approach to one-class classification of remote sensing imagery, Int. J. Remote Sens. 31, 8, 2227-2235, DOI: 10.1080/01431161003702245.
- Liberti, M., T. Simoniello, M.T. Carone, R. Coppola, M. D’Emilio, and M. Macchiato (2009), Mapping badland areas using LANDSAT TM/ETM satellite imagery and morphological data, Geomorphology 106, 3-4, 333-343, DOI: 10.1016/j.geomorph.2008.11.012.
- Matikainen, L., and K. Karila (2011), Segment-based land cover mapping of a suburban area—comparison of high-resolution remotely sensed datasets using classification trees and test field points, Remote Sens. 3, 8, 1777-1804, DOI: 10.3390/rs3081777.
- McLachlan, G.J. (1992), Discriminant Analysis and Statistical Pattern Recognition, John Wiley and Sons, New York.
- Melgani, F., and S.B. Serpico (2002), A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remotesensing images, Pattern Recogn. Lett. 23, 9, 1053-1061, DOI: 10.1016/S0167-8655(02)00052-1.
- Michaelides, S.C., F.S. Tymvios, and T. Michaelidou (2009), Spatial and temporal characteristics of the annual rainfall frequency distribution in Cyprus, Atmos. Res. 94, 4, 606-615, DOI: 10.1016/j.atmosres.2009.04.008.
- Mortier, F., S. Robin, S. Lassalvy, C. Baril, and A. Bar-Hen (2006), Prediction of Euclidean distances with discrete and continuous outcomes, J. Multivariate Anal. 97, 8, 1799-1814, DOI: 10.1016/j.jmva.2005.06.010.
- Moussa, R., and C. Bocquillon (2009), On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain, J. Hydrol. 374, 1-2, 116-135, DOI: 10.1016/j.jhydrol.2009.06.006.
- Peterson, A.T., and J. Shaw (2003), Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects, Int. J. Parasitol. 33, 9, 919-931, DOI: 10.1016/S0020-7519(03)00094-8.
- Phillips, S.J., M. Dudík, and R.E. Schapire (2004), A maximum entropy approach to species distribution modeling. In: Proc. Twenty-First Int. Conf. on Machine Learning, Banff, Alberta, Canada, ACM, New York, 655-662, DOI: 10.1145/1015330.1015412.
- Phillips, S.J., R.P. Anderson, and R.E. Schapire (2006), Maximum entropy modeling of species geographic distributions, Ecol. Model. 190, 3-4, 231-259, DOI: 10.1016/j.ecolmodel.2005.03.026.
- Risnes, R., H. Haghighi, R.I. Korsnes, and O. Natvik (2003), Chalk-fluid interactions with glycol and brines, Tectonophysics 370, 1-4, 213-226, DOI: 10.1016/S0040-1951(03)00187-2.
- Risnes, R., M.V. Madland, M. Hole, and N.K. Kwabiah (2005), Water weakening of chalk – Mechanical effects of water-glycol mixtures, J. Petrol. Sci. Eng. 48, 1-2, 21-36, DOI: 10.1016/j.petrol.2005.04.004.
- Roosta, H., R. Farhoudi, and M. Roosta (2007), Multi temporal disaggregation of MODIS images using non-linear analysis. In: Proc. of 5th WSEAS Int. Conf. on Environment, Ecosystems and Development, 14-16 December 2007, Tenerife, Spain, 222-227.
- Shafique, M., M. Van der Meijde, and S. Ullah (2011), Regolith modeling and its relation to earthquake induced building damage : A remote sensing approach, J. Asian Earth Sci. 42, 1-2, 65-75, DOI: 10.1016/j.jseaes.2011.04.004.
- Shankar, B.U., S.K. Meher, and A. Ghosh (2011), Wavelet-fuzzy hybridization: Feature-extraction and land-cover classification of remote sensing images, Appl. Soft Comput. 11, 3, 2999-3011, DOI: 10.1016/j.asoc.2010.11.024.
- Shannon, C.E. (1948), A mathematical theory of communication, Bell Syst. Tech. J. 27, 379-423.
- Takagi, T., T. Oguchi, J. Matsumoto, M.J. Grossman, M.H. Sarker, and M.A. Matin (2007), Channel braiding and stability of the Brahmaputra River, Bangladesh, since 1967: GIS and remote sensing analyses, Geomorphology 85, 3-4, 294-305, DOI: 10.1016/j.geomorph.2006.03.028.
- Van Vliet, J. (2009), Assessing the accuracy of changes in spatial explicit land use change models. In: 12th Annual AGILE Int. Conf. on Geographic Information Science 2009, Leibniz Universitat Hannover, Germany.
- Van Vliet, J., A.K. Bregt, and A. Hagen-Zanker (2011), Revisiting Kappa to account for change in the accuracy assessment of land-use change models, Ecol. Model. 222, 8, 1367-1375, DOI: 10.1016/j.ecolmodel.2011.01.017.
- Weng, Q. (2002), Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling, J. Environ. Manage. 64, 3, 273-284, DOI: 10.1006/jema.2001.0509.
- Wu, X., J.T. Sullivan, and A.K. Heidinger (2010), Operational calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible and near-infrared channels, Can. J. Remote Sens. 36, 5, 602-616, DOI: 10.5589/m10-080.
- Yang, C., J.H. Everitt, and D. Murden (2011), Evaluating high resolution SPOT 5 satellite imagery for crop identification, Comput. Electron. Agr. 75, 2, 347-354, DOI: 10.1016/j.compag.2010.12.012.
- Zhang, R., and D. Zhu (2011), Study of land cover classification based on knowledge rules using high-resolution remote sensing images, Expert Syst. Appl. 38, 4, 3647-3652, DOI: 10.1016/j.eswa.2010. 00.019.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0017-0027