Czasopismo
2012
|
Vol. 60, no. 3
|
794-808
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We examined the behavior of different fractal dimensions when applied to study features of earthquake spatial distribution on different types of data. We first examined simulated spatial fields of points of different clustering level, following the so called Soneira-Peebles model. The model was chosen because it displays some similarity to the real clustering structure of earthquakes occurring on hierarchically ordered faults. The analysis of the capacity, clustering and correlation dimensions revealed that their behavior did not completely correlate with the clustering level of the simulated data sets. We also studied temporal variations of the fractal coefficients, characterizing the spatial distribution of the 1999 Izmit-Düzce aftershock sequence. The calculated coefficient values demonstrated analogous behavior like for the simulated data. They exposed different variability in time, but for all of them a systematic fluctuation was observed before the occurrence of the Düzce earthquake. Our analysis revealed that although fractal coefficients could be applied to measure earthquake clustering, they should be used with caution, trying to figure out the best coefficient for a certain data set.
Czasopismo
Rocznik
Tom
Strony
794-808
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
Bibliografia
- Ben-Zion, Y., and C.G. Sammis (2003), Characterization of fault zones, Pure Appl. Geophys. 160, 3-4, 677-715, DOI: 10.1007/PL00012554.
- Daniel, G., D. Marsan, and M. Bouchon (2006), Perturbation of the İzmit earthquake aftershock decaying activity following the 1999 Mw 7.2 Düzce, Turkey, earthquake, J. Geophys. Res. 111, B05310, DOI: 10.1029/2005JB003978.
- Delsanto, P.P., D. Iordache, and Ş. Puşcă (2003), Study of the correlations between different effective fractal dimensions used for fracture parameters descriptions. In: Proc. First South-East European Symp. Interdisciplinary Approaches in Fractal Analysis, 7-10 May 2003, Bucharest, Romania.
- Feder, J. (1989), Fractals, Physics Today 42, 9, 90, DOI: 10.1063/1.2811154.
- Grassberger, P., and I. Procaccia (1983), Characterization of strange attractors, Phys. Rev. Lett. 50, 5, 346-349, DOI: 10.1103/PhysRevLett.50.346.
- Hubert-Ferrari, A., A. Barka, E. Jacques, S.S. Nalbant, B. Meyer, R. Armijo, P. Tapponnier, and G.C.P. King (2000), Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake, Nature 404, 269-273, DOI: 10.1038/35005054.
- Kagan, Y.Y. (1981a), Spatial distribution of earthquakes: the three-point moment function, Geophys. J. Roy. Astron. Soc. 67, 3, 697-717, DOI: 10.1111/j.1365-246X.1981.tb06948.x.
- Kagan, Y.Y. (1981b), Spatial distribution of earthquakes: the four-point moment function, Geophys. J. Roy. Astron. Soc. 67, 3, 719-733, DOI: 10.1111/j.1365-246X.1981.tb06949.x.
- Kagan, Y.Y. (2007), Earthquake spatial distribution: the correlation dimension, Geophys. J. Int. 168, 1175-1194, DOI: 10.1111/j.1365-246X.2006.03251.x.
- Kagan, Y.Y., and L. Knopoff (1980), Spatial distribution of earthquakes: the twopoint correlation function, Geophys. J. Roy. Astron. Soc. 62, 2, 303-320, DOI: 10.1111/j.1365-246X.1980.tb04857.
- Karakostas, V.G., and E.E. Papadimitriou (2010), Fault complexity associated with the 14 August 2003 Mw6.2 Lefkada, Greece, aftershock sequence, Acta Geophys. 58, 5, 838-854, DOI: 10.2478/s11600-010-0009-6.
- Lasocki, S., and L. De Luca (1998), Monte Carlo studies of relations between fractal dimensions in monofractal data sets, Pure Appl. Geophys. 152, 2, 213-220, DOI: 10.1007/s000240050151.
- Makropoulos, K.C., and P.W. Burton (1984), Greek tectonics and seismicity, Tectonophysics 106, 3-4, 275-304, DOI: 10.1016/0040-1951(84)90181-1.
- Mandelbrot, B. (1977), Fractals: Form, Chance and Dimension, Freeman and Co., San Francisco.
- Mandelbrot, B. (1982), The Fractal Geometry of Nature, Freeman and Co., New York.
- Murdzek, R. (2007), The box-counting method in the large scale structure of the universe, Rom. J. Phys. 52, 1-2, 149-154.
- Ogata, Y. (1998), Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math. 50, 2, 379-402, DOI: 10.1023/A:1003403601725.
- Öncel, A.O., and T. Wilson (2007), Anomalous seismicity preceding the 1999 Izmit event, NW Turkey, Geophys. J. Int. 169, 1, 259-270, DOI: 10.1111/j.1365-246X.2006.03298.x.
- Öncel, A.O., Ö. Alptekin, and I. Main (1995), Temporal variations of the fractal properties of seismicity in the western part of the north Anatolian fault zone: possible artefacts due to improvements in station coverage, Nonlin. Processes Geophys. 2, 3/4, 147-157, DOI: 10.5194/npg-2-147-1995.
- Paredes, S., B.J.T. Jones, and V.J. Martínez (1995), The clustering of galaxy clusters: synthetic distributions and the correlation function amplitude, Mon. Not. R. Astron. Soc. 276, 1116-1130.
- Pons-Bordería, M.J., V. Martínez, B. López-Martí, and S. Paredes (2003), Correlations at large scale. In: E.D. Feigelson and G. Jogesh Babu (eds.), Statistical Challenges in Astronomy, Springer-Verlag, New York, 475-476.
- Seeber, L., J.G. Armbruster, N. Ozer, M. Aktar, S. Baris, D. Okaya, Y. Ben-Zion, and N. Field (2000), The 1999 earthquake sequence along the North Anatolian transform fault at the juncture between the two main ruptures. In: A. Barka, O. Kozaci, S. Akyuz, and E. Altunel (eds.), The 1999 Izmit and Düzce Earthquakes: Preliminary Results, Istanbul Technical University, Istanbul.
- Soneira, R.M., and P.J.E. Peebles (1978), A computer model universe – Simulation of the nature of the galaxy distribution in the Lick catalog, Astron. J. 83, 845-857, DOI: 10.1086/112268.
- Sornette, A., and D. Sornette (1989), Self-organized criticality and earthquakes, Europhys. Lett. 9, 3, 197-202, DOI: 10.1209/0295-5075/9/3/002.
- Telesca, L., V. Lapenna, and M. Macchiato (2004), Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences, Chaos Solitons Fract. 19, 1, 1-15, DOI: 10.1016/S0960-0779(03)00188-7.
- Todorovska, M.I., I.D. Gupta, V.K. Gupta, V.W. Lee, and M.D. Trifunac (1995), Selected topics in probabilistic seismic hazard analysis, Report No. CE 95-08, Dept. of Civil Eng., University of Southern California, Los Angeles, U.S.A.
- Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge.
- Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72, 3, 373-382, DOI: 10.1785/gssrl.72.3.373.
- Xie, H. (1993), Fractals in Rock Mechanics, Balkema Publishers, Rotterdam.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0017-0017