Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | Vol. 32, nr 4A | 43-55
Tytuł artykułu

Suryey on physically-based animation techniques

Warianty tytułu
PL
Przegląd technik animacji opartych na symulacji fizycznej
Języki publikacji
EN
Abstrakty
EN
Physically-based animation, thanks to the growing computing power of currently used computer hardware, has a chance to become a leading trend in the computer-aided animation of virtual characters. While synthesized motion may offer lower quality than recorded with motion-capture techniąues, results are very promising.
PL
Animacja oparta ns symulacji fizycznej, dzięki rosnącej mocy obliczeniowej obecnie używanego sprzętu komputerowego, ma szansę zostać wiodącym trendem w komputerowo wspomaganej animacji postaci wirtualnych. Mimo niewiele gorszej jakości ruchu syntetyzowanego w stosunku do technik motion-capture wyniki są bardzo obiecujące.
Wydawca

Czasopismo
Rocznik
Strony
43-55
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
Bibliografia
  • 1. Hodgins J. K., Wooten W. L., Brogan D. C, 0'Brien J. F.: Animating human athletics. In Proc. SIGGRAPH 1995.
  • 2. Yin K., Loken K., van de Panne M.: Simbicon: Simple biped locomotion control. ACM Transactions on Graphics 2007.
  • 3. Zordan V., Hodgins J. K.: Motion capture-driven simulations that hit and react. In Proc. SCA 2002.
  • 4. Wang J. M., Fleet D. J., Hertzmann A.: Optimizing Walking Controllers. ACM Trans. Graphics 2009.
  • 5. Abe Y., Popovic J.: Interactive Animation of Dynamie Manipulation. In Proc. SCA 2006.
  • 6. Todorov E., Jordan M.: Optimal feedback control as a theory of motor coordination. NatureNeuroscience 2002, Vol.5, No.l 1, p. 1226-1235.
  • 7. Khatib O.: A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation. IEEE J. Robotics and Automation 1987.
  • 8. de Lasa M., Hertzmann A.: Prioritized Optimization for Task-Space Control. In Proc. IROS 2009.
  • 9. de Lasa M., Mordatch I., Hertzmann A.: Feature-Based Locomotion Controllers. In Proc. SIGGRAPH 2010.
  • 10. Moratch I., de Lasa M., Hertzmann A.: Robust Physics-Based Locomotion using Low-Dimensional Planning. In Proc. SIGGRAPH 2010.
  • 11. Abe Y., da Silva M., Popovic J.: Mułtiobjective Control with Frictional Contacts. In Proc. SCA 2007.
  • 12. da Silva M., Abe Y., Popovic J.: Interactive Simulation of Stylized Human Locomotion. ACM Trans. Graphics 2008.
  • 13. Macchietto A., Zordan V., Shelton C: Momentum Control for Balance. ACM Trans. Graphics 2009.
  • 14. Raibert M. H.: Legged robots. Commun. ACM 1986.
  • 15. da Silva M., Yeuhi A., Popovic J.: Simulation of Human Motion Data using Short-Horizon Model-predictive Control. Computer Graphics Forum 2008.
  • 16. Sardain P., Bessonnet G.: Forces acting on a Biped Robot. Center of Pressure - Zero Moment Point. IEEE Trans. Systems, Man, and Cybernetics 2004.
  • 17. Goswami A.: Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point. Int. J. Robotics Research 1999.
  • 18. Goswami A., Kallem V.: Rate of change of angular momentum and balance maintenance of biped robots. IEEE Int. Conf. Robotics and Automation 2004.
  • 19. Popovic M., Herr H: Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications. Int. J. Robotics Research 2005.
  • 20. Nenchev D. N., Nishio A.: Experimental validation of ankle and hip strategies for balance recovery with a biped subjected to an impact. IROS 2007.
  • 21. van der Kooij H., Donker S., de Vrijer M., van der Heim F.: Identification of human balance control in standing. IEEE Int. Conf. Systems, Man, and Cybernetics 2004.
  • 22. Stephens B.: Integral Control of Humanoid Balance. IROS 2007.
  • 23. Kuo A.D.: An Optimal Control Model for Analyzing Human Postural Balance. IEEE Trans. Biomedical Engineering 1995.
  • 24. Nakada M., Allen B., Morishima S., Terzopoulos D.: Learning Arm Motion Strategies for Balance Recovery of Humanoid Robots. Int. Conf. Emerging Security Technologies 2010.
  • 25. Popovic M., Hofmann A., Herr H: Zero spin angular momentum control: definition and applicability. IEEE/RAS Int. Conf. Humanoid Robots 2004.
  • 26. Wooten W.: Simulation of Leaping, Tumbling, Landing, and Balancing Humans. PhD thesis, Georgia Inst. Tech. 1998.
  • 27. Tsai Y., Lin W., Cheng K. B., Lee J., Lee T.: Real-Time Physics-Based 3D Biped Character Animation Using an Inverted Pendulum Model. IEEE Trans. Visualization and Comp. Graphics 2010.
  • 28. Poskriakov S.: Humanoid Balance Control: A Comprehensive Review. Diploma Thesis. University of Geneva 2006.
  • 29. Ishiyama R., Ikeda H., Sakamoto S.: A Compact Model of Human Postures Extracting Common Motion from Individual Samples. ICPR 2006. Media and Information Research Laboratories.
  • 30. Venture G.: Human Characterization and Emotion Characterization from Gait. IEEE EMBS Buenos Aires 2010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0019-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.