Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | Vol. 60, no. 1 | 173-190
Tytuł artykułu

Green’s function of the linearized Saint-Venant equations in laminar and turbulent flows

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, an analytical expression of the Green’s function of linearized Saint-Venant equations (LSVEs) for shallow water waves is provided and applied to analyse the propagation of a perturbation superposed to a uniform flow. Independently of the kinematic character of the base flow, i.e., subcritical or supercritical uniform flow, the effects of a non-uniform vertical velocity profile and a non-constant resistance coefficient are accounted for. The use of the Darcy-Weisbach friction law allows a unified treatment of both laminar and turbulent conditions. The influence on the wave evolution of the wall roughness and the fluid viscosity are finally discussed, showing that in turbulent regime the assumption of constant friction coefficient may lead to an underestimation of both amplification and damping factors on the wave fronts, especially at low Reynolds numbers. This conclusion has to be accounted for, particularly in describing hyper-concentrated suspensions or other kinds of Newtonian mixtures, for which the high values of the kinematic viscosity may lead to relatively low Reynolds numbers.
Wydawca

Czasopismo
Rocznik
Strony
173-190
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Dipartimento di Meccanica, Strutture, Ambiente e Territorio, Universita` di Cassino, Cassino, Italy, dicristo@unicas.it
Bibliografia
  • Abbott, M.B., and A.W. Minns (1998), Computational Hydraulics, 2nd ed., Ashgate Publishing, Aldershot, 557 pp.
  • Abramowitz, M., and I.A. Stegun (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publs., New York.
  • Becchi, I., E. Caporali, F. Castelli, and C. Lorenzini (200l), Field analysis of the water film dynamics on a road pavement, Phys. Chem. Earth C 26, 10-12, 717-722.
  • Berlamont, J.E. (1976), Roll-waves in inclined rectangular open channels. In: Proc. Int. Symp. on Unsteady Flow in Open Channels, 12-15 April 1976, University of Newcastle-upon-Tyne, BHRA Fluid Engineering, Newcastle, A2, 13-26.
  • Berlamont, J.E., and N. Vanderstappen (1981), Unstable turbulent flow in open channels, J. Hydr. Div. ASCE 107, 4, 427-449.
  • Brock, R.R. (1970), Periodic permanent roll waves, J. Hydr. Div. ASCE 96, 12, 2565-2580.
  • Brutsaert, W. (1973), Review of Green’s functions for linear open channels, J. Engrg. Mech. Div. 99, 12, 1247-1257.
  • Chow, V.T. (1959), Open Channel Hydraulics, Mc Graw Hill, New York.
  • Cunge, J.A., F.M. Holly, and A. Verwey (1994), Practical Aspects of Computational River Hydraulics, Pitman Publishing Ltd., London, reprinted by the University of Iowa.
  • Di Cristo, C., and A. Vacca (2005), On the convective nature of roll waves instability, J. Appl. Math. 2005, 3, 259-271.
  • Di Cristo, C., M. Iervolino, A. Vacca, and B. Zanuttigh (2008), Minimum channel length for roll-wave generation, J. Hydr. Res. 46, 1, 73-79.
  • Di Cristo, C., M. Iervolino, A. Vacca, and B. Zanuttigh (2009), Roll-waves prediction in dense granular flows, J. Hydrol. 377, 1-2, 50-58.
  • Di Cristo, C., M. Iervolino, A. Vacca, and B. Zanuttigh (2010), Influence of relative roughness and Reynolds number on the roll-waves spatial evolution, J. Hydr. Engrg. ASCE 136, 1, 24-33.
  • Dooge, J.C.I., and B.M. Harley (1967), Linear routing in uniform open channels. In: Proc. Int. Hydrology Symp., 6-8 September 1967, Colorado State University, Fort Collins, Vol. 1, paper 8, 57-63.
  • Dooge, J.C.I., and J.J. Napiórkowski (1984), Effect of downstream control in diffusion routing, Acta Geophys. Pol. 32, 4, 363-373.
  • Dooge, J.C.I., and J.J. Napiórkowski (1987), The effect of the downstream Bondary conditions in the linearized St Venant equations, Quart. J. Mech. Appl. Math. 40, 2, 245-256.
  • Dooge, J.C.I., J.J. Napiórkowski, and W.G. Strupczewski (1987), The linear downstream response of a generalized uniform channel, Acta Geophys. Pol. 35, 3, 277-291.
  • Henderson, F.M. (1966), Open Channel Flow, MacMillan Co., New York.
  • Huerre, P., and P.A. Monkewitz (1990), Local and global instabilities in spatially developing flows, Ann. Rev. Fluid Mech. 22, 473-537.
  • Ishihara, T., Y. Iwagaki, and Y. Iwasa (1961), Discussion on “Roll waves and slug flows in inclined open channels”, Trans. ASCE 126, 548-563.
  • Julien, P.Y., and D.M. Hartley (1986), Formation of roll waves in laminar sweet flow, J. Hydr. Res. 24, 1, 5-17.
  • Julien, P.Y., N. Friesen, J.G. Duan, and R. Eykholt (2010), Celerity and amplification of supercritical surface waves, J. Hydr. Engrg. 136, 9, 656-661.
  • Liggett, J.A. (1975), Stability. In: K. Mahmood and V. Yevjevich (eds.), Unsteady Flow in Open Channel, Vol.1, Water Resources Publs., Fort Collins.
  • Lighthill, M.J., and G.B. Witham (1955), On kinematic waves. I. Flood movement in long rivers, Proc. Roy. Soc. London A, 229, 1178, 281-316.
  • Litrico, X., and V. Fromion (2004a), Simplified modeling of irrigation canals for controller design, J. Irrig. Drain. Engrg. 130, 5, 373-383.
  • Litrico, X., and V. Fromion (2004b), Analytical approximation of open-channel flow for controller design, Appl. Math. Model. 28, 7, 677-695.
  • Liu, Q.Q., L. Chen, J.C. Li, and V.P. Singh (2005), Roll waves in overland flow, J. Hydrol. Engrg. 10, 2, 110-117.
  • Mareels, I., E. Weyer, S.K. Ooi, M. Cantoni, Y. Li, and G. Nair (2005), Systems engineering for irrigation systems: Successes and challenges, Ann. Rev. Control 29, 2, 191-204.
  • Montuori, C. (1961), La formazione spontanea dei treni d'onde su canali a pendenza molto forte, L'Energia Elettrica 38, 2, 127-141 (in Italian).
  • Montuori, C. (1963), Discussion on “Stability aspects of flow in open channels”, J. Hydr. Div. ASCE 89, 4, 264-273.
  • Morse, P.M., and H. Feshbach (1953), Methods of Theoretical Physics, McGraw-Hill Book Co., New York.
  • Napiórkowski, J.J., and J.C.I. Dooge (1988), Analytical solution of channel flow model with downstream control, Hydrolog. Sci. J. 33, 3, 269-287.
  • Oppenheim, A.V., A.S. Willsky, and S.H. Nawab (1997), Signals and Systems, 2nd ed., Prentice Hall, Upper Saddle River.
  • Ponce, V.M., and D.B. Simons (1977), Shallow wave propagation in open channel flow, J. Hydr. Div. ASCE 103, 12, 1461-1476.
  • Ridolfi, L., A. Porporato, and R. Revelli (2006), Green’s function of the linearized de Saint–Venant equations, J. Engrg. Mech. 132, 2, 125-132.
  • Rouse, H. (1959), Advanced Mechanics of Fluids, John Wiley & Sons Inc.
  • Supino, G. (1960), Sopra le onde di traslazione nei canali, Rendiconti Lincei 29, 5-6, 543-552 (in Italian).
  • Toro E.F. (2001), Shock-Capturing Methods for Free-Surface Shallow Flows, Wiley & Sons, Chichester.
  • Trowbridge, J.H. (1987), Instability of concentrated free surface flows, J. Geophys. Res. 92, C9, 9523-9530.
  • Tsai, C.W.-S., and B.C. Yen (2001), Linear analysis of shallow water wave propagation in open channels, J. Engrg. Mech. 127, 5, 459-472.
  • Vedernikov, V.V. (1946), Characteristics features of a liquid flow in an open channel, USSR Acad. Sci. Comptes Rendus 52, 3, 207-210.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0018-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.