Warianty tytułu
Języki publikacji
Abstrakty
Artificial corner reflectors (ACRs) are widely applicable in monitoring terrain change via interferometric synthetic aperture radar (InSAR) remote sensing techniques. Many different types are available. The choice of the most appropriate ones has recently attracted scholarly attentions. Based on physical optics methods, via calculating the radar cross section (RCS) values (the higher the value, the better the detectability), the current study tested three ACRs, i.e., triangular pyramidal, rectangular pyramidal and square trihedral ACRs. Our calculation suggests that the square trihedral ACR produces the largest RCS but least tolerance towards incident radar ray’s deviation from optimal angle. The triangular pyramidal trihedral ACR is the most geometrically stable ACR, and has the highest tolerance towards incident radar ray’s deviation. Its RCS values, however, are the least of the three. Due to the high cost of deploying ACRs in the fields, the physical optics method seems to provide a viable way to choose appropriate ACRs.
Czasopismo
Rocznik
Tom
Strony
43-58
Opis fizyczny
Bibliogr. 41 poz.
Bibliografia
- Anderson, W.C. (1987), Consequences of nonorthogonality on the scattering properties of dihedral reflectors, IEEE T. Antenn. Propag. 35, 10, 1154-1159.
- Balanis, C.A. (1989), Advanced Engineering Electromagnetics, John Wiley & Sons, New York.
- Baldauf, J., S.-W. Lee, L. Lin, S.-K. Jeng, S.M. Scarborough, and C.L. Yu (1991), High frequency scattering from trihedral corner reflectors and other benchmark targets: SBR versus experiment, IEEE T. Antenn. Propag. 39, 9, 1345-1351.
- Chandran, A.R., M. Gopikrishna, C.K. Aanandan, P. Mohanan, and K. Vasudevan (2006), Radar cross-section enhancement of dihedral corner reflector Rusing fractal-based metallo-dielectric structures, Electron. Lett. 42, 20, 1135-1136.
- Che, J., and S. Tang (2007), RCS analysis of hypersonic cruise vehicle, J. Astronautics 28, 1, 227-232.
- Chen, Y.Q., G.B. Zhang, X.L. Ding, and Z.L. Li (2000), Monitoring earth surface deformations with InSAR technology: principle and some critical issues, J. Geospatial Eng. 2, 1, 3-21.
- Corona, P., G. Ferrara, and C. Gennarelli (1987), Backscattering by loaded and unloaded dihedral corners, IEEE T. Antenn. Propag. 35, 10, 1148-1153.
- Crosetto, M., C.C. Tscherning, B. Crippa, and M. Castillo (2002), Subsidence monitoring using SAR interferometry: Reduction of the atmospheric effects using stochastic filtering, Geophys. Res. Lett. 29, 9, 26-1-26-4.
- Dong, C.Z., F.Z. Geng, H.C. Yin, and C. Wang (2007), New hybridization of PO, SBR, and MoM for scattering by large complex conducting objects, J. Syst. Eng. Electron. 18, 4, 726-730.
- Fan, J.H., and Y.Q. Wang (2006), Analysis of RCS characteristic of dihedral korner reflectors, Ship Electronic Eng. 26, 2, 148-150.
- Ferrer, P.J., C. Lopez-Martinez, A. Aguasca, L. Pipia, J.M. Gonzalez-Arbesu, X. Fabregas, and J. Romeu (2011), Transpolarizing trihedral corner reflektor characterization using a GB-SAR system, IEEE Geosci. Remote S. 8, 4, 774-778.
- Ferretti, A., C. Prati, and F. Rocca (2001), Permanent scatterers in SAR interferometry, IEEE T. Geosci. Remote 39, 1, 8-20.
- Fu, W.X., H.D. Guo, Q.J. Tian, and X.F. Guo (2010), Landslide monitoring by korner reflectors differential interferometry SAR, Int. J. Remote Sens. 31, 24, 6387-6400.
- Geng, N., M.A. Ressler, and L. Carin (1999), Wide-band VHF scattering from a trihedral reflector situated above a lossy dispersive halfspace, IEEE T. Geosci. Remote 37, 5, 2609-2617.
- Gennarelli, C., G. Pelosi, and G. Riccio (1998), Physical optics analysis of the field backscattered by a depolarising trihedral corner reflector, IEE P-Microw. Anten. P. 145, 3, 213-218.
- Gordon, W.B. (1975), Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields, IEEE T. Antenn. Propag. 23, 4, 590-592.
- Griesser, T., and C.A. Balanis (1987a), Backscatter analysis of dihedral corner reflectors using physical optics and the physical theory of diffraction, IEEE T. Antenn. Propag. 35, 10, 1137-1147.
- Griesser, T., and C.A. Balanis (1987b), Dihedral corner reflector backscatter Rusing higher order reflections and diffractions, IEEE T. Antenn. Propag. 35, 11, 1235-1247.
- Griesser, T., C.A. Balanis, and K. Liu (1989), RCS analysis and reduction for lossy dihedral corner reflectors, Proc. IEEE 77, 5, 806-814.
- Hayashi, K., R. Sato, Y. Yamaguchi, and H. Yamada (2006), Polarimetric scattering analysis for a finite dihedral corner reflector, IEICE T. Commun. E89B, 1, 191-195.
- Kennaugh, E.M., and D.L. Moffatt (1965), Transient and impulse response approximations, Proc. IEEE 53, 8, 893-901.
- Knott, E. (1977), RCS reduction of dihedral corners, IEEE T. Antenn. Propag. 25, 3, 406-409.
- Knott, E.F., J.F. Shaeffer, and M.T. Tuley (1985), Radar Cross Section: Its Prediction Measurement and Reduction, Artech House, Dedham, MA, 467 pp.
- Ling, H., R.-C. Chou, and S.-W. Lee (1989a), Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity, IEEE T. Antenn. Propag. 37, 2, 194-205.
- Ling, H., S.-W. Lee, and R.-C. Chou (1989b), High-frequency RCS of open cavities with rectangular and circular cross sections, IEEE T. Antenn. Propag. 37, 5, 648-654.
- Liu, Z. -S., and J. Li (1998), Feature extraction of SAR targets consisting of trihedral and dihedral corner reflectors, IEE P-Radar Son. Nav. 145, 3, 161-172.
- Ma, Y.H. (2000), Calculation of the scattered field from a 2-D perfectly conducting dihedral corner reflector, J. Microwaves 16, 2, 193-197.
- Mantovani, F., R. Soeters, and C.J. Van Westen (1996), Remote sensing techniques for landslide studies and hazard zonation in Europe, Geomorphology 15, 3-4, 213-215.
- Michaeli, A. (1986), Elimination of infinities in equivalent edge currents, Part II: Physical optics components, IEEE T. Antenn. Propag. 34, 8, 1034-1037.
- Michaeli, A. (1995), Incremental diffraction coefficients for the extended physical theory of diffraction, IEEE T. Antenn. Propag. 43, 7, 732-734.
- Park, C.-G., N.-H. Myung, and S.-D. Choi (1995), Efficient solution for backscattered field of a dihedral corner reflector, Electron. Lett. 31, 9, 706-707.
- Prats, P., R. Scheiber, A. Reigber, C. Andres, and R. Horn (2009), Estimation of the surface velocity field of the Aletsch glacier using multibaseline air borne SAR interferometry, IEEE T. Geosci. Remote 47, 2, 419-430.
- Richards, M.A., and K.D. Trott (1995), A physical optics approximation to the range profile signature of a dihedral corner reflector, IEEE T. Electromagn. C. 37, 3, 478-481.
- Shan, X.J., J.Y. Yin, D.L. Yu, C.F. Li, J.J. Zhao, and G.F. Zhang (2011), Analysis of artificial corner reflector’s radar cross section: a physical optics perspective, Photogramm. Eng. Rem. S. (in press).
- Strozzi, T., U. Wegmüller, L. Tosi, G. Bitelli, and V. Spreckels (2001), Land subsidence monitoring with differential SAR interferometry, Photogramm. Eng. Rem. S. 67, 11, 1261-1270.
- Strozzi, T., U. Wegmüller, C.L. Werner, A. Wiesmann, and V. Spreckels (2003), JERS SAR interferometry for land subsidence monitoring, IEEE T. Geosci. Remote 41, 7, 1702-1708.
- Tarchi, D., N. Casagli, R. Fanti, D.D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano (2003a), Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy, Eng. Geol. 68, 1-2, 15-30.
- Tarchi, D., N. Casagli,S. Moretti, D. Leva, and A.J. Sieber (2003b), Monitoring landslide displacements by using ground-based synthetic aperture radar interferometry: Application to the Ruinon landslide in the Italian Alps, J. Geophys. Res. 108, B8, 2387.
- Unal, C.M.H., R.J. Niemeijer, J.S. Van Sinttruyen, and L.P. Ligthart (1994), Callibration of a polarimetric radar using a rotatable dihedral corner reflector, IEEE T. Geosci. Remote 32, 4, 837-845.
- Xia, Y., H. Kaufmann, and X.F. Guo (2004), Landslide monitoring in the Tyree Gorges area using D-INSAR and corner reflectors, Photogramm. Eng. Rem. S. 70, 10, 1167-1172.
- Xing, X.M., X.L. Ding, J.J. Zhu, C.C. Wang, W. Ding, Y.F. Yang, and Y.Z. Wang (2011), Detecting the regional linear subsidence based on CRInSAR and PSInSAR integration, Chinese J. Geophys. 54, 5, 1193-1204.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0018-0019