Czasopismo
2011
|
Vol. 59, no. 4
|
785-814
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The location of the seismic event hypocenter is the very first task undertaken when studying any seismological problem. The accuracy of the solution can significantly influence consecutive stages of analysis, so there is a continuous demand for new, more efficient and accurate location algorithms. It is important to recognize that there is no single universal location algorithm which will perform equally well in any situation. The type of seismicity, the geometry of the recording seismic network, the size of the controlled area, tectonic complexity, are the most important factors influencing the performance of location algorithms. In this paper we propose a new location algorithm called the extended double difference (EDD) which combines the insensitivity of the doubledifference (DD) algorithm to the velocity structure with the special demands imposed by mining: continuous change of network geometry and a very local recording capability of the network for dominating small induced events. The proposed method provides significantly better estimation of hypocenter depths and origin times compared to the classical and double-difference approaches, the price being greater sensitivity to the velocity structure than the DD approach. The efficiency of both algorithms for the epicentral coordinates is similar.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
785-814
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
autor
- Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rudzin@igf.edu.pl
Bibliografia
- Aki, K., and P.G. Richards (1980), Quantitative Seismology: Theory and Methods, Freeman, San Francisco.
- Bijwaard, H., and W. Spakman (1999), Fast kinematic ray tracing of first- and laterarriving global seismic phases, Geophys. J. Int. 139, 2, 359-369.
- Bouchon, M. (2003), A review of the discrete wavenumber method, Pure Appl. Geophys. 160, 3-4, 445-465.
- Červený, V. (2001), Seismic Ray Theory, Cambridge University Press, New York.
- Chib, S., and E. Greenberg (1995), Understanding the Metropolis–Hastings algorithm, Am. Stat. 49, 4, 327-335.
- Dębski, W. (1997), The probabilistic formulation of the inverse theory with application to the selected seismological problems, Publs. Inst. Geophys. Pol. Acad. Sci. B-19, 293, 1-173.
- Dębski, W. (1999), Location of seismic events using Bayesian paradigm, Acta Montana 16, 118, 53-60.
- Dębski, W. (2004), Application of Monte Carlo techniques for solving selected seismological inverse problems, Publs. Inst. Geophys. Pol. Acad. Sci. B-34, 367, 1-207.
- Dębski, W. (2010a), Probabilistic inverse theory, Adv. Geophys. 52, 1-102.
- Dębski, W. (2010b), Seismic tomography by Monte Carlo sampling, Pure Appl. Geophys. 167, 1-2, 131-152.
- Dębski, W., and M. Ando (2004), Spectral ray tracer: A class of accurate two-point ray tracers, Acta Geophys. Pol. 52, 1, 1-14.
- Dębski, W., B. Guterch, H. Lewandowska-Marciniak, and P. Labák (1997), Earthquake sequences in the Krynica region, western Carpathians, 1992-1993, Acta Geophys. Pol. 45, 4, 255-290.
- Gibowicz, S.J. (1990), Seismicity induced by mining, Adv. Geophys. 32, 1-74.
- Gibowicz, S.J. (2009), Seismicity induced by mining: Recent research, Adv. Geophys. 51, 1-53.
- Gibowicz, S.J., and A. Kijko (1994), An Introduction to Mining Seismology, Academic Press, San Diego.
- Gibowicz, S.J., and S. Lasocki (2001), Seismicity induced by mining: Ten years later, Adv. Geophys. 44, 39-181.
- Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (eds.) (1996), Markov Chain Monte Carlo in Practice, Chapman and Hall, London.
- Got, J.-L., J. Fréchet, and F. Klein (1994), Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea, J. Geophys. Res. 99, B8, 15375-15386.
- Gregersen, S., P. Wiejacz, W. Dębski, B. Domański, B. Assinovskaya, B. Guterch, P. Mäntyniemi, V.G. Nikulin, A. Pacesa, V. Puura, A.G. Aronov, T.I. Aronova, G. Grünthal, E.S. Husebye, and S. Sliaupa (2007), The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004, Phys. Earth Planet. Int. 164, 63-74.
- Husen, S., E. Kissling, E. Flueh, and G. Asch (1999), Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network, Geophys. J. Int. 138, 3, 687-701.
- Husen, S., E. Kissling, N. Deichmann, S. Wiemer, D. Giardini, and M. Baer (2003), Probabilistic earthquake location in complex three-dimensional velocity models: Application to Switzerland, J. Geophys. Res. 108, B2, 2077.
- Kijko, A., and M. Sciocatti (1995), Optimal spatial distribution of seismic stations in mines, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32, 6, 607-615.
- Lasocki, S. (1992), Non-Poissonian structure of mining induced seismicity, Acta Montana 84, 51-58.
- Lomax, A., J. Virieux, P. Volant, and C. Berge (2000), Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis–Gibbs method and comparison with linear locations. In: C.H. Thurber, E. Kissling, and N. Rabinovitz (eds.), Advances in Seismic Event Location, Kluwer, Amsterdam, 101-134.
- Mendecki, A.J. (ed.) (1997), Seismic Monitoring in Mines, Chapman and Hall, London.
- Moczo, P., J. Kristek, M. Galis, P. Pazak, and M. Balazovjech (2007), The finitedifference and finite-element modeling of seismic wave propagation and earthquake motion, Acta Phys. Slovaca 57, 2, 177-406.
- Mortimer, Z., and S. Lasocki (1996), Studies of fractality of epicenter distribution geometry in mining induced seismicity, Acta Montana A10, 102, 31-37.
- Mosegaard, K., and A. Tarantola (2002), Probabilistic approach to inverse problems. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger (eds.), International Handbook of Earthquake and Engineering Seismology. Part A, Academic Press, London, 237-265.
- Mosegaard, K., and M. Sambridge (2002), Monte Carlo analysis of inverse problems, Inv. Prob. 18, R29-R45.
- Orlecka-Sikora, B., and S. Lasocki (2002), Clustered structure of seismicity from the Legnica-Głogów Copper District, Publs. Inst. Geophys. Pol. Acad. Sci. M-24, 340, 105-119 (in Polish).
- Podvin, P., and I. Lecomte (1991), Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools, Geophys. J. Int. 105, 1, 271-284.
- Rudziński, L., and W. Dębski (2008), Relocation of mining-induced seismic events in the Upper Silesian Coal Basin, Poland, by a double-difference method, Acta Geodyn. Geomater. 5, 2, 97-104.
- Shearer, P.M. (1997), Improving local earthquake locations using the L1 norm and waveform cross correlation: Application to the Whittier Narrows, California, aftershock sequence, J. Geophys. Res. 102, B4, 8269-8283.
- Spottiswoode, S.M., and A.M. Milev (1998), The use of waveform similarity to Defie planes of mining-induced seismic events, Tectonophysics 289, 1-3, 51-60.
- Tarantola, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, New York, 613 pp.
- Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 342 pp.
- Um, J., and C. Thurber (1987), A fast algorithm for two-point seismic ray tracing, Bull. Seism. Soc. Am. 77, 3, 972-986.
- Vidale, J.E. (1990), Finite-difference calculation of traveltimes in three dimensions, Geophysics 55, 5, 521-526.
- Virieux, J. (1991), Fast and accurate ray tracing by Hamiltonian perturbation, J. Geophys. Res. 96, B1, 579-594.
- Waldhauser, F., and W.L. Ellsworth (2000), A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California, Bull. Seism. Soc. Am. 90, 6, 1353-1368.
- Wiejacz, P., and W. Dębski (2001), New observations of Gulf of Gdańsk seismic events, Phys. Earth Planet. Int. 123, 2-4, 233-245.
- Wiejacz, P., and W. Dębski (2009), Podhale, Poland, earthquake of November 30, 2004, Acta Geophys. 57, 2, 346-366.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0014-0034