Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | Vol. 59, no. 1 | 124-138
Tytuł artykułu

Performance of soil particle-size distribution models for describing deposited soils adjacent to constructed dams in the China Loess Plateau

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil particle-size distributions (PSD) have been used to estimate soil hydraulic properties. Various parametric PSD models have been proposed to describe the soil PSD from sparse experimental data. It is important to determine which PSD model best represents specific soils. Fourteen PSD models were examined in order to determine the best model for representing the deposited soils adjacent to dams in the China Loess Plateau; these were: Skaggs (S-1, S-2, and S-3), fractal (FR), Jaky (J), Lima and Silva (LS), Morgan (M), Gompertz (G), logarithm (L), exponential (E), log-exponential (LE), Weibull (W), van Genuchten type (VG) as well as Fredlund (F) models. Four-hundred and eighty samples were obtained from soils deposited in the Liudaogou catchment. The coefficient of determination (R2), the Akaike’s information criterion (AIC), and the modified AIC (mAIC) were used. Based upon R2 and AIC, the three- and four-parameter models were both good at describing the PSDs of deposited soils, and the LE, FR, and E models were the poorest. However, the mAIC in conjunction with R2 and AIC results indicated that the W model was optimum for describing PSD of the deposited soils for emphasizing the effect of parameter number. This analysis was also helpful for finding out which model is the best one. Our results are applicable to the China Loess Plateau.
Wydawca

Czasopismo
Rocznik
Strony
124-138
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
autor
  • Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, CAS, Chengdu, China, mashao@ms.iswc.ac.cn
Bibliografia
  • Akaike, H. (1973), Information theory and an extension of the maximum likelihood principle. In: B.N. Petrov and F. Csáki (eds.), Proc. Second International Symposium on Information Theory, Akadémia Kiadó, Budapest, 267-281.
  • da Silva, E.M., J.E.F.W. Lima, L.N. Rodrigues, and J.A. de Azevedo (2004), Comparison of mathematical models for fitting particle-size distribution curves, Pesq. Agropec. Bras. 39, 4, 363-370.
  • Fredlund, M.D., D.G. Fredlund, and G.W. Wilson (2000), An equation to represent grain-size distribution, Can. Geotech. J. 37, 4, 817-827.
  • Giménez, D., W.J. Rawls, Y. Pachepsky, and J.P.C. Watt (2001), Prediction of a pore distribution factor from soil textural and mechanical parameters, Soil Sci. 166, 2, 79-88.
  • Haverkamp, R., and J.Y. Parlange (1986), Predicting the water-retention curve from particle-size distribution: 1. Sandy soils without organic matter, Soil Sci. 142, 6, 325-339.
  • Hwang, S. (2004), Effect of texture on the performance of soil particle-size distribution models, Geoderma 123, 3-4, 363-371.
  • Jaky, J. (1944), Soil Mechanics, Egyetemi Nyomda, Budapest (in Hungarian).
  • Kolev, B., S. Rousseva, and D. Dimitrov (1996), Derivation of soil water capa city parameters from standard soil texture information for Bulgarian soils, Ecol. Model. 84, 1-3, 315-319.
  • Kravchenko, A., and R. Zhang (1998), Estimating the soil water retention from particle-size distributions: A fractal approach, Soil Sci. 163, 3, 171-179.
  • Morgan, P.H., L.P. Mercer, and N.W. Flodin (1975), General model for nutritional responses of higher organisms, Proc. Nat. Acad. Sci. USA 72, 11, 4327-4331.
  • Nemes, A., and W.J. Rawls (2006), Evaluation of different representations of the particle-size distribution to predict soil water retention, Geoderma 132, 1-2, 47-58.
  • Nemes, A., J.H.M. Wösten, A. Lilly, and J.H. Oude Voshaar (1999), Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases, Geoderma 90, 3-4, 187-202.
  • Phoa, F.K.H., Y.H. Pan, and H. Xu (2009), Analysis of supersaturated designs via the Dantzig selector, J. Stat. Plan. Infer. 139, 7, 2362-2372.
  • Rousseva, S.S. (1997), Data transformations between soil texture schemes, Eur. J. Soil Sci. 48, 4, 749-758.
  • Sénéchal, P., and G. Sénéchal (2010), Relationships between water flow rate and geophysical measurements in an alluvial aquifer, Acta Geophys. 58, 1, 83-95.
  • Skaggs, T.H., L.M. Arya, P.J. Shouse, and B.P. Mohanty (2001), Estimating particle-size distribution from limited soil texture data, Soil Sci. Soc. Am. J. 65, 4, 1038-1044.
  • Smettem, K.R.J., and P.J. Gregory (1996), The relation between soil water retention and particle size distribution parameters for some predominantly sandy Western Australian soils, Aust. J. Soil Res. 34, 5, 695-708.
  • Taguas, F.J., M.A. Martín, and E. Perfect (1999), Simulation and testing of selfsimilar structures for soil particle-size distributions using iterated function systems, Geoderma 88, 3-4, 191-203.
  • van Genuchten, M.Th. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44, 5, 892-898.
  • Weibull, W. (1951), A statistical distribution function of wide application, J. Appl. Mech. 18, 293-297.
  • Wu, L., J.A. Vomocil, and S.W. Childs (1990), Pore size, particle size, aggregate size, and water retention, Soil Sci. Soc. Am. J. 54, 4, 952-956.
  • Young, R.A. (1980), Characteristics of eroded sediment, Trans. ASAE 23, 5, 1139-1142, 1146.
  • Zhao, A., M. Huang, and Z. Shi (2008), Evaluation of parameter models for estimation loess soil particle-size distribution, Trans. CSAE 2008-01.
  • Zhao, P., M. Shao, and J. Zhuang (2009), Fractal features of particle size redistributions of deposited soils on the dam farmlands, Soil Sci. 174, 7, 403-407.
  • Zhuang, J., Y. Jin, and T. Miyazaki (2001), Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept, Soil Sci. 166, 5, 308-321.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0012-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.