Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2010 | Vol. 58, no. 4 | 624-644
Tytuł artykułu

Study of effects of focal depth on the characteristics of Rayleigh waves using finite difference method

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a relationship between the focal depth in terms of Rayleigh-wave wavelength and the dominant frequency of Rayleigh waves generated in a homogeneous half-space. Rayleigh waves were simulated using a (2, 4) staggered grid P-SV wave finite difference algorithm with VGR-stress imaging technique as a free surface boundary condition. VGR is an acronym for vertical grid-size reduction. The simulated seismic responses using P-wave and SV-wave sources at different focal depths revealed Rayleigh-wave generation up to certain focal depth only for the considered frequency bandwidth. A shift of normalized spectral shape of Rayleigh wave towards lower frequency with increasing focal depth was inferred. Largest spectral amplitude was obtained in the wavelength for which the ratio of focal depth to the wavelength of Rayleigh wave was around 0.17 in the case of P-wave source and 0.9 in the case of SV-wave source. An exponential decrease of spectral amplitude of Rayleigh wave with the departure of the ratio of focal depth to Rayleigh wave wavelength from the above mentioned values was obtained.
Wydawca

Czasopismo
Rocznik
Strony
624-644
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
Bibliografia
  • Clayton, R.W., and B. Engquist (1977), Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am. 67, 1529-1540.
  • Graves, R.W. (1996), Simulating seismic wave propagation in 3-D elastic media using staggered grid finite difference, Bull. Seism. Soc. Am. 86, 1091-1107.
  • Israeli, M., and S.A. Orszag (1981), Approximation of radiation boundary conditions, J. Comp. Phys. 41, 115-135.
  • Kristek, J., P. Moczo, and R.J. Archuleta (2002), Efficient methods to simulate plan ar free surface in the 3D 4th order staggered grid finite difference scheme, Stud. Geophys. Geod. 46, 355-381.
  • Kumar, S., and J.P. Narayan (2008), Absorbing boundary conditions in a fourthorder accurate SH-wave staggered grid finite difference algorithm, Acta Geophys. 56, 4, 1090-1108.
  • Levander, A.R. (1988), Fourth-order finite difference P-SV seismograms, Geophysics 53, 1425-1436.
  • Luo, Y., and G. Schuster (1990), Parsimonious staggered grid finite differencing of the wave equation, Geophys. Res. Lett. 17, 155-158.
  • Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66, 163-182.
  • Moczo, P. (1989), Finite difference technique for SH-waves in 2-D media Rusing irregular grids. Application to the seismic response problem, Geophys. J. Int. 99, 321-329.
  • Moczo, P., J. Kristek, and E. Bystricky (2000), Stability and grid dispersion of the P-SV 4th order staggered grid finite difference scheme, Stud. Geophys. Geod. 44, 381-402.
  • Moczo, P., J. Kristek, V. Vavrycuk, R.J. Archuleta, and L. Halada (2002), 3D heterogeneous staggered-grid finite-difference modelling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seism. Soc. Am. 92, 3042-3066.
  • Narayan, J.P. (2001a), Site specific strong ground motion prediction using 2.5-D modelling, Geophys. J. Int. 146, 269-281.
  • Narayan, J.P. (2001b), site specific ground motion prediction using 3-D modelling, ISET J. Earthquake Technology 38, 17-29.
  • Narayan, J.P. (2005), Study of basin-edge effects on the ground motion characteristics using 2.5-D Modeling, Pure Appl. Geophys. 162, 273-289.
  • Narayan, J.P., and A. Ram (2006), Study of effects of underground ridge on the ground motion characteristics, Geophys. J. Int. 165, 180-196.
  • Narayan, J.P., and S.P. Singh (2006), Effects of soil layering on the characteristics of basin-edge induced surface waves and differential ground motion, J. Earthquake Eng. 10, 595-616.
  • Narayan, J.P., and S. Kumar (2008), A 4th order accurate SH-wave staggered grid finite difference algorithm with variable grid size and VGR-stress imaging technique, Pure Appl. Geophys. 165, 271-294.
  • Narayan,J.P., and S. Kumar (2009), Effects of soil layering on the characteristics of basin-edge induced surface waves, Acta Geophys. 57, 2, 294-310.
  • Narayan, J.P., and S. Kumar, (2010), A 4th order accurate P-SV-wave staggered grid finite difference algorithm with variable grid size and VGR-stress imaging technique, Geofizika 27 (in press; online available at http://geofizikajournal.gfz.hr).
  • Ohminato, T., and B.A. Chouet (1997), A free surface boundary condition for including 3-D topography in the finite difference method, Bull. Seism. Soc. Am. 87, 494-515.
  • Pitarka, A. (1999), 3-D elastic finite difference modelling of seismic motion Rusing staggered grids with variable spacing, Bull. Seism. Soc. Am. 89, 54-68.
  • Tanimoton T., and L. Rivera (2005), Prograde Rayleigh wave particle motion, Geophys. J. Int. 162, 399-405.
  • Virieux, J. (1986), P-SV wave propagation in heterogeneous media, velocity stress finite-difference method, Geophysics 51, 889-901.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0009-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.