Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, a two layered blood flow model through a cylindrical tube of a Bingham type non-Newtonian fluid is considered. The relative coefficients of viscosity for peripheral and core layer are determined and their nature is shown graphically for different values of the maximum hematocrit, shape parameter, etc.
Rocznik
Tom
Strony
17-26
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
autor
- Department of Mathematics Kalyani Govt. Engineering College Kalyani, West Bengal, INDIA, kd_kgec@rediffmail.com
Bibliografia
- Bloch E.L. (1962): A quantitative study of the hemodynamics in the living microvascular system. - Amer. J. Anatomy, vol.110, pp.125-153.
- Bugliarello G., Kapur C. and Hsias G. (1965): The profile velocity and other characteristics of blood flow in a non-uniform shear fluid. - Proc. Four. Int. Congr. on Rheology, A.L. Copley [Ed], Interscience, N.Y., pp.351-370.
- Bugliarello G. and Sevilia J. (1970): Velocity distribution and other characteristics of study and pulsatile blood flow in fine glass tubes. - Biorheology, vol.7, pp.85-107.
- Chaturani P. and Biswas D. (1983): Three layered Couette flow of polar fluid with non-zero particle spin boundary condition at the interfaces with application to blood flow. - Biorheology, vol.20, pp.734-744.
- Chaturani P. and Biswas D. (1988): A comparative study of two-layered Poiseuille flow of a polar fluid under different boundary conditions with application to blood flow. - Proc. of the Nineth Int. Congress of Mathematical Biology, 1983, at Paris, France, Biorheology, Revue de Bio-Mathematique. vol.101, pp.47-56.
- Das K. and Saha G.C.(2010): Herschel-Bulkley model for two-phase blood flow in narrow vessel. - Int. J. of Applied Mechanics and Engineering, vol.15, pp.19-34.
- Dintenfass L. (1967): An inversion of the Fahreaeus-Lindqvist phenomenon in blood flow through capillaries of diminishing radius. - Nature. vol.215, pp.1099-1100.
- Fahreaeus R. and Lindqvist T. (1931): The velocity of blood in narrow capillary tubes. - Amer. J. Physiol. vol.96, pp.562-568.
- Haynes R.H. and Burton A.C. (1959): Role of non-Newtonian behavior of blood in hemodynamics. - Amer. J. Physiol. vol.197, pp.943-953.
- Maghi S.N. and Usha L. (1985): A mathematical note on the Fahreaeus-Lindqvist effect in power-law fluid. - Bull. Math. Biol. vol.47, pp.765-769.
- Majumder H.P. et al.(1995): On the consistency coefficient of a power-law flow of blood through the narrow vessel. - Engng., Trans. Polish Academy of Sciences.- Institute of Fundamental Technological Research. vol.43, pp.373-382.
- Quemada D. (1983): Blood rheology and its implication in flow of blood in arteries and arterial blood flow - C.M. Rodkiewicz [ED]. - Wien: Springer Verlag, pp.1-127.
- Quemada C.M. (1983): Flow in large arteries, in arteries and arterial blood flow. - C. M. Rodkiewicz [ED]. - Wien: Springer Verlag, pp.327-411.
- Sanyal D.C., Das K. and Debnath S. (2010): On relative coefficients of viscosity of blood through blood vessel. - Allahabad Math. Soci., vol.25, No.1, pp.137-147.
- Sanyal D.C. and Sarkar B. (2006): Analysis of coefficient of viscosity for two-layered blood flow through narrow vessel. - Jour. of Indian Acad. Math., vol.28, pp.455-474.
- Sukla J.B., Parihar R.S. and Gupta S.P. (1980): Effects of peripheral layer viscosity on blood flow through the artery with mild stenosis. - Bull. Math. Biol., vol.42, pp.797-805.
- Tandon P.N. and Kushwaha (1992): A study of Fahreaeus-Lindqvist effect in oscillatory capillary blood-blood flows. - Proc. Nat. Acad. Sci. India, vol.62, No.A, pp.797-805.
- Whitmore R.L. (1967): A theory of blood flow in small vessels. - J. Appl. Physiol. vol.22, pp.767-771.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0026-0002