Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 16, no 3 | 683-708
Tytuł artykułu

Wave propagation at the boundary surface of orthotropic porous material with rotation and isotropic elastic half-space

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this research is to study the surface wave propagation in a layer of an orthotropic porous material with rotation lying over an isotropic elastic half-space. The frequency equation is derived after developing the mathematical model. The dispersion curves giving the phase velocity and attenuation coefficient versus wave number are plotted graphically to depict the effects of rotation and anisotropy for (I) welded contact and (II) smooth contact boundary conditions. The amplitudes of normal displacement, normal stress, volume fraction field and gradient of volume fraction field for the welded contact are obtained and are shown graphically for a particular model to depict the rotation and anisotropy effects. Some special cases are also deduced from the present investigation.
Wydawca

Rocznik
Strony
683-708
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
autor
autor
Bibliografia
  • Achenbach J.D. and Keshava S.P. (1967): Free waves in a plate supported by a semi-infinite continuum. - Journal of Applied Mechanics, pp.397-404.
  • Ahmad F. and Rahman A. (2000): Acoustic scattering by transversely isotropic cylinder. - International Journal of Engineering Sciences, vol.38, pp.325-335.
  • Bullen K.E. (1963): An introduction to the theory of seismology. - Cambridge: Cambridge University Press.
  • Chandrasekharaiah D.S. (1989): Complete solution in the theory of elastic materials with voids-II. - The Quarterly Journal of Mechanics and Applied Mathematics, vol.42, pp.41-54.
  • Chandrasekharaiah D.S. (1987): Plane waves in a rotating elastic solid with voids. - International Journal of Engineering Science, vol.25, pp.591-596.
  • Chandrasekharaiah D.S. and Cowin S.C. (1989): Unified complete solution for the theories of thermoelasticity and poroelasticity. - Journal of Elasticity, vol.21, pp.121-126.
  • Clarke N.S. and Burdess J.S. (1994): A rotation rate sensor based upon a Rayleigh resonator. - Journal of Applied Mechanica, vol.61, pp.139-143.
  • Clarke N.S. and Burdess J.S. (1994): Rayleigh waves on a rotating surface. - Journal of Applied Mechanica, vol.61, pp.724-726.
  • Ciarletta M. and Sumbatyan M.A. (2003): Reflection of plane waves by the free boundary of a porous elastic half-space. - Journal of Sound and Vibration, vol.259, No.2, pp.253-264.
  • Cowin S.C. (2004): Anisotropic poroelasticity: fabric tensor formulation. - Mechanics of Materials, vol.36, pp.665-677.
  • Cowin S.C. and Nunziato J.W. (1983): Linear elastic materials with voids. - Journal of Elasticity, vol.13, pp.125-147.
  • Cowin S.C. (1984): The stress around a hole in a linear elastic material with voids. - The Quarterly Journal of Mechanics and Applied Mathematics, vol.37, pp.441-465.
  • Destrade M. and Saccomandi G. (2004): Some results on finite amplitudes elastic waves propagating in rotating media. - Acta Mechanica, vol.173, pp.19-31.
  • Dhaliwal R.S. and Wang J. (1994): A domain of influence theorem in linear theory of elastic material with voids. - International Journal of Engineering Sciences, vol.2, pp.1823-1828.
  • Golam Hossen F.R. (2000): Propagation of waves in an elastic cylinder with voids. - Science and Technology Research Journal University of Mauritius, Reduit Mauritius, vol.5, pp. 44-52.
  • Goodman M. and Cowin S.C. (1971): A continuum theory of granular material. - Archive for Rational Mechanics and Analysis, vol.44, pp.249-266.
  • Goodman M.A. and Cowin S.C. (1971): Two problems in the gravity flow of granular materials. - Journal of Fluid Mechanics, vol.45, pp.321-339.
  • Iesan D. and Scalia A. (2007): On the deformation of functionally graded porous elastic cylinders. - Journal of Elasticity, vol.87, pp.147-159.
  • Mirsky I. (1964): Vibration of orthotropic, thick, cylinder shells. - The Journal of the Acoustical Society of America, vol.36, No.1, pp.41-51.
  • Mondal A.K and Acharya D.P. (2006): Surface waves in a micropolar elastic solid containing voids. - Acta Geophysica, vol.54, No.4, pp.430-452.
  • Nunziato J.W. and Cowin S.C. (1979): A non-linear theory of elastic materials with voids. - Archive for Rational Mechanics and Analysis, vol.72, pp.175-201.
  • Puri P. and Cowin S.C. (1985): Plane waves in linear elastic material with voids. - Journal of Elasticity, vol.15, pp.167-183.
  • Scarpetta E. (1995): Wellposedness theorems for linear elastic material with voids. - International Journal of Engineering Sciences, vol.33, pp.151-161.
  • Schoenberg M. and Censor D. (1973): Elastic waves in rotating media. - Quarterly of Applied Mathematics, vol.31, pp.115-125.
  • Selezov I.T. and Avramenko O.V. (1998): Wave propagation in an elastic layer with voids located in a liquid. - Journal of Mathematical Sciences, vol.88, No.3, pp.400-406.
  • Ting T.C.T. (2004): Surface waves in a rotating anisotropic elastic half-space. - Wave Motion, vol.40, pp.329-346.
  • Wheeler L.T. and Isaak A K. (1982): On voids of minimum stress concentration. - International Journal of Solids and Structures, vol.18, pp.85-89.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0017-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.