Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 16, no 2 | 557-580
Tytuł artykułu

Thermoconvective magnetized ferrofluid with internal angular momentum: a nonlinear stability analysis

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The generalized energy method is developed to study the nonlinear stability analysis for a magnetized ferrofluid layer heated from below with intrinsic rotation of the particles, in the stress-free boundary case. The mathematical emphasis is on how to control the nonlinear terms caused by the magnetic body force, inertia forces and body couple on a fluid element. By introducing a suitable generalized energy functional, we perform a nonlinear energy stability (conditional) analysis. It is found that the nonlinear critical stability magnetic thermal Rayleigh number does not coincide with that of the linear instability analysis, and thus indicates that the subcritical instabilities are possible. However, it is noted that, in the case of non-ferrofluid, the global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effect of the magnetic parameter M3, coupling parameter N1, and spin diffusion parameter N3, on the subcritical instability region has also been analyzed. It is shown that with the increase of the magnetic parameter (M3) the subcritical instability region between the two theories decreases quickly while with the increase of N1 and N3, the subcritical instability region between the two theories increases. We also demonstrate coupling between the buoyancy and magnetic forces in the nonlinear energy stability analysis as well as in the linear instability analysis.
Wydawca

Rocznik
Strony
557-580
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
autor
  • Department of Mathematics National Institute of Technology Hamirpur, (H.P.) 177 005, INDIA, sunilnitham@gmail.com
Bibliografia
  • Adams R. (1975): Sobolev Spaces. - New York: Academic Press.
  • Chandrasekhar S. (1981): Hydrodynamic and Hydromagnetic Stability. - New York: Dover.
  • Finlayson B.A. (1970): Convective instability in ferromagnetic fluids. - J. Fluid Mech., vol.40, pp.753-767.
  • Galdi G.P. and Padula M. (1990): A new approach to energy theory in the stability of fluid motion. - Arch. Ration. Mech. Anal., vol.110, pp.187-286.
  • Galdi G.P. and Straughan B. (1985): A nonlinear analysis of the stabilizing effect of rotation in the Bénard problem. - Proc. Roy. Soc. Lond. A 402, pp.257-283.
  • Hardy G.H., Littlewood J.E. and Polya G. (1994): Inequalities. - Cambridge: Cambridge University Press.
  • Joseph D.D. (1965): On the stability of the Boussinesq equations. - Arch. Ration. Mech. Anal., vol.20, pp.59-71.
  • Joseph D.D. (1966): Nonlinear stability of the Boussinesq equations by the method of energy. - Arch. Ration. Mech. Anal., vol.22, pp.163-184.
  • Joseph D.D. (1976): Stability of Fluid Motions. - Vols I-II, Berlin: Springer.
  • Joseph D.D. and Hung W. (1971): Contributions to the nonlinear theory of stability of viscous flow in pipes and between rotating cylinders. - Arch. Rational Mech. Anal., vol.44, pp.1-22.
  • Kaiser R. and Xu L.X. (1998): Nonlinear stability of the rotating Bénard problem, the case Pr =1. - Nonlinear Differ. Equ. Appl., vol.5, pp.283-307.
  • Kloeden P. and Wells R. (1983): An explicit example of hopf bifurcation in fluid mechanics. - Proc. Roy. Soc. Lond. A vol.390, pp.293-320.
  • Mulone G. and Rionero S. (1989): On the nonlinear stability of the rotating Bénard problem via the Lyapunov direct method. - J. Math. Anal. Appl., vol.144, pp.109-127.
  • Orr W.Mc.F. (1907): Stability or instability of the steady motions of a perfect liquid. - Proc. Roy. Irish. Acad. Sect. A vol.37, pp.9-68 and 69-138.
  • Prodi G. (1962): Teoremi di tipo locale per il sistema di Navier-Stokes e stabilita delle soluzioni stazionarie. - Rend. Sem. Mat. Univ. Padova, vol.32, pp.374-397.
  • Rosensweig R.E. (1985): Ferrohydrodynamics. - Cambridge: Cambridge University Press.
  • Rosensweig R.E. (1987): Magnetic fluids. - Rev. Fluid Mech., vol.19, pp.437-463.
  • Sattinger D. (1970): The mathematical problem of hydrodynamic stability. - J. Math. Mech., vol.19, pp.797-817.
  • Serrin J. (1959): On the stability of viscous fluid motions. - Arch. Ration. Mech. Anal., vol.3, pp.1-13.
  • Shliomis M.I. (1974): Magnetic fluids. - Sov. Phys. Usp., vol.17, pp.153-169.
  • Stiles P.J. and Kagan M.J. (1990): Thermo-convective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. - J. Magn. Magn. Mater., vol.85, pp.196-198.
  • Straughan B. (2001): A sharp nonlinear stability threshold in rotating porous convection. - Proc. Roy. Soc. Lond. A vol.457, pp.87-93.
  • Straughan B. (2004): The Energy Method, Stability, and Nonlinear Convection. - New York: Springer Verlag.
  • Sunil, Sharma D. and Sharma R.C. (2004): Effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous medium. - J. Geophys. Eng., vol.1, pp.116-127.
  • Sunil, Sharma D. and Sharma R.C. (2005): Effect of dust particles on thermal convection in ferromagnetic fluid saturating a porous medium. - J. Magn. Magn. Mater., vol.288, pp.183-195.
  • Sunil, Sharma D. and Sharma V. (2005): Effect of dust particles on rotating ferromagnetic fluid heated from below saturating a porous medium. - J. Coll. Inter. Sci., vol.291, pp.152-161.
  • Sunil, Sharma A. and Sharma R.C. (2006): Effect of dust particles on ferrofluid heated and soluted from below. - Int. J. Therm. Sci., vol.45, pp.347-358.
  • Sunil and Mahajan A. (2008): A nonlinear stability analysis for magnetized ferrofluid heated from below. - Proc. Roy. Soc. A 464, pp.83-98.
  • Sunil and Mahajan A. (2008): Thermoconvective magnetized ferrofluid with internal angular momentum saturating a porous medium: A nonlinear stability analysis. - App. Math. Comp., vol.205, pp.403-416.
  • Sunil and Mahajan A. (2009): A nonlinear stability analysis for thermoconvective magnetized ferrofluid saturating a porous medium. - Trans Porous Media, vol.76, pp.327-343.
  • Sunil and Mahajan A. (2009): A nonlinear stability analysis for rotating magnetized ferrofluid heated from below saturating a porous medium. - ZAMP 60, pp.344-362.
  • Venkatasubramanian S. and Kaloni P.N. (1994): Effects of rotation on the thermoconvective instability of a horizontal layer of ferrofluids. - Int. J. Eng. Sci., vol.32, pp.237-256.
  • Venkatasubramanian S. and Kaloni P.N. (2002): Stability and uniqueness of magnetic fluid motions. - Proc. Roy. Soc. Lond. A 458, pp.1189-1204.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0017-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.