Czasopismo
2009
|
Vol. 14, no 4
|
989-1008
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Fourth order nonlinear evolution equations are derived for two Stokes wave trains in deep water in the presence of air flowing over water. The importance of the fourth order term in the evolution equation was pointed out by Dysthe (1979). Stability analysis is then made for uniform two Stokes wave trains in the presence of air flowing over water. From these evolution equations the expressions for the maximum growth rate of instability, the wave number at marginal stability and the wave number separation of fastest growing side band are derived and graphs are plotted for the above three expressions against the wave steepness. Significant improvements can be achieved from the results obtained from the two coupled third order nonlinear Schrödinger equations.
Rocznik
Tom
Strony
989-1008
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
autor
autor
- Department of Mathematics Bengal Engineering and Science University, Shibpur P.O. Botanic Garden, Shibpur Howrah - 711103, West Bengal, INDIA, asoke.dhar@gmail.com
Bibliografia
- Benjamin T.B. and Feir J.E. (1967): The disintegration of wave trains on deep water, I. Theory. - J. Fluid Mech., vol.27, pp.417-430.
- Brinch-Nielsen U. and Jonsson J.G. (1986): Fourth order evolution equations and stability analysis for Stokes waves on arbitrary water depth. - Wave Motion, vol.8, pp.455-472.
- Das K.P. (1986): On evolution equations for a three dimensional surface gravity wave packet in a two layer fluid. - Wave Motion, vol.8, pp.191-204.
- Davey A. and Stewartson K. (1974): On three dimensional packets of surface waves. - Proc. R. Soc. Lond., vol.-A 338, pp.101-110.
- Dhar A.K. and Das K.P. (1991): Fourth order nonlinear evolution equation for two Stokes wave trains in deep water. - Phys. Fluids, vol.A3, No.12, pp.3021-3026 .
- Dhar A.K. and Das K.P. (1994): Stability analysis from fourth order evolution equation for small but finite amplitude interfacial waves in the presence of a basic current shear. - J. Austral. Math. Soc. vol. ser. B 35, pp.348-365.
- Dhar A.K. and Das K.P. (1999): A fourth order evolution equation for capillary gravity waves including the effects of wind input and shear in the water current. - Applied Mechanics and Engineering, vol.4, No.1, pp.5-24.
- Dhar A.K. and Das K.P. (2001): The effect of randomness on stability of surface gravity waves from fourth order nonlinear evolution equation. - Int. J. of Applied Mechanics and Engineering, vol.6, No.1, pp.11-34.
- Djordjevic V.D. and Redekopp L.G. (1977): On two dimensional packets of capillary gravity waves. - J. Fluid Mech., vol.79, pp.703-714.
- Dungey J.C. and Hui W.H. (1979): Nonlinear energy transfer in a narrow gravity-wave spectrum. - Proc. R. Soc. Lond., vol.A368, pp.239-265.
- Dysthe K.B. (1979): Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. - Proc. R. Soc. Lond., vol.A369, pp.105-114.
- Hogan S.J. (1985): The fourth order evolution equation for deep water gravity capillary waves. - Proc. R. Soc. Lond., vol.A402, pp.359-372.
- Janssen P.A.E.M. (1983): On fourth order evolution equation for deep water waves. - J. Fluid Mech. J. Fluid Mech., vol.126, pp.1-11.
- Longuet-Higgins M.S. (1978a): The instabilities of gravity waves of finite amplitude in deep water, I. Super Harmonics. - Proc. R. Soc. Lond., vol.A360, pp.471-488.
- Longuet-Higgins M.S. (1978b): The instabilities of gravity waves of finite amplitude in deep water, II. Sub Harmonics. - Proc. R. Soc. Lond., vol.A360, pp.489-506.
- Longuet-Higgins M.S. and Phillips O.M. (1962): Phase velocity effects in tertiary wave interactions. - J. Fluid Mech., vol.12, pp.333-336.
- Roskes G.J. (1976): Nonlinear multiphase deep-water wave trains. - Phys.Fuids, vol.19, pp.1253-1254.
- Stiassnie M. (1984): Note on the modified nonlinear Schrödinger equation for deep water waves. - Wave Motion, vol.6, pp.431-433.
- Willebrand J. (1975): Transport in a nonlinear and inhomogeneous random gravity wave fluid. - J. Fluid Mech., vol.70, pp.113-126.
- Zakharov V.E. (1968): Stability of periodic waves of finite amplitude on the surface of a deep fluid. - J. Appl. Mech. Tech. Phys. vol.2, pp.190-194.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0003-0006