Czasopismo
2010
|
Vol. 10, iss. 1
|
19-22
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper the model hardening of tool steel takes into considerations of mechanical phenomena is presented. Fields stresses and strains are obtained from solutions by FEM equilibrium equations in rate form. The stresses generated during hardening were assumed to result from thermal load, structural deformation, and plastic deformation and transformation plasticity. Thermophysical values in the constitutive relations are depended upon both the temperature and the phase composition. Condition Huber-Misses with the isotropic strengthening for the creation of plastic strains is used. However model Leblond to determined transformations plasticity applied. The analysis of stresses associated of the elements hardening made of tool steel was done.
Czasopismo
Rocznik
Tom
Strony
19-22
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
autor
autor
- Institute of Computer and Information Sciences, Czestochowa University of Technology, 42-200 Częstochowa, 73 Dąbrowskiego str., Poland, bokota@icis.pcz.pl
Bibliografia
- [1] S.H. Kang, Y.T. Im, Thermo-elesto-plastic finite element analysis of quenching process of carbon steel. Intenational Journal of Mechanical Sciences 49, (2007) 13-16.
- [2] M. Coret, A. Combescure, A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels), International Journal of Mechanical Sciences, 44 (2002) 1947-1963.
- [3] A. Bokota, T. Domański, Numerical analysis of thermo-mechanical phenomena of hardening process of elements made of carbon steel C80U. Archives of Metallurgy and Materials, 52(2), (2007), 277-288.
- [4] L. Taleb, F. Sidoroff, A micromechanical modelling of the Greenwood-Johnson mechanism in transformation induced plasticity, International Journal of Plasticity, 19 (2003) 1821-1842.
- [5] O.C. Zienkiewicz, R.L. Taylor, The finite element method, Butterworth-Heinemann, Fifth edition, vol. 1,2,3, 2000.
- [6] T. Domański, A. Bokota, Numerical modelling of hardening of tool steel. A thermal phenomena and phase transformations. Archives of Foundry Engineering, x(x), (2009) xx-xx (in printed).
- [7] M. Białecki, Characteristic of steels, seria F, tom I, Editor Silesia 1987, 108-129, 155-179. (in Polish).
- [8] S.H. Kang, Y.T. Im, Three-dimensional thermo-elestic-plastic finite element modeling of quenching process of plain carbon steel in couole with phase transformation. Journal of Materials Processing Technology 192-193, (2007) 381-390.
- [9] A. Bokota, T. Domański, L. Sowa, Numerical prediction of the hardening stresses in at elements of steel C80U. Archives of Foundry Engineering, 4(4), (2007) 13-16.
- [10] M. Cherkaoui, M. Berveiller, H. Sabar, Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals, International Journal of Plasticity, vol 14, no. 7 (1998) 597-626.
- [11] D.Y. Ju, W.M. Zhang, Y. Zhang, Modeling and experimental verification of martensitic transformation plastic behavior in carbon steel for quenching process, Materials Science and Engineering A 438-440 (2006) 246-250.
- [12] S. Caddemi, J.B. Martin, Convergence of the Newton-Raphson algorithm in elastic-plastic incremental analysis, Int. J. Numer. Meth. Eng., 31 (1991) 177-191.
- [13] J. Jasiński, Influence of fluidized bed on diffusional processes of saturation of steel surface layer. Seria: Inżynieria Materiałowa Nr 6, Wydawnictwo WIPMiFS, Częstochowa 2003 (in Polish).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0037-0003