Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 21, iss.1-2 | 5-25
Tytuł artykułu

Optimisation method of feature extractor for automatic pattern recognition system of motor vehicles

Warianty tytułu
PL
Metoda optymalizacji ekstraktora cech charakterystycznych dla systemu automatycznego rozpoznawania obrazów pojazdów mechanicznych
Języki publikacji
EN
Abstrakty
EN
The formalism of rough set theory (RST) was adapted for the problem of optimisation of feature extractor in the form of holographic, computer generated ring - wedge detector in pattern recognition system in spatial frequency domain. Within the framework of the present paper for the information system with conditional attributes of continuous type, the notion of modified indiscernibility relation was proposed [...] Given modification can also be applied to a generalised version of RST of variable precision. As a result of the proposed optimisation method of feature extractor in the system of automatic pattern recognition of motor vehicles, the number of nondeterministic rules was decreased from 3% for the best case of single-criterion optimization to 2% for a typical solution in multi-criterion optimisation, which constitutes a 33% improvement in relation to the best problem solution obtained in a single-criterion model. Thus, an assumption was proved that introduction of an additional auxiliary criterion would help in search for better solutions.
PL
Formalizm teorii zbiorów przybliżonych (TZP) został zaadaptowany do problemu optymalizacji ekstraktora cech charakterystycznych w postaci holograficznego, komputerowo generowanego detektora pierścieniowo-klinowego w systemie rozpoznawania obrazów w dziedzinie częstotliwości przestrzennych. W ramach niniejszej pracy dla systemu informacyjnego z atrybutami warunkowymi typu ciągłego zaproponowano określenie zmodyfikowanej relacji nierozróżnialności [...] Podana modyfikacja może też być stosowana w uogólnionej wersji TZP o zmiennej precyzji. W efekcie zaproponowanej metody optymalizacji ekstraktora cech charakterystycznych w systemie automatycznego rozpoznawania obrazów pojazdów mechanicznych zmniejszono ilość reguł niedeterministycznych z 3% dla najlepszego przypadku optymalizacji jednokryterialnej do 2% dla typowego rozwiązania w optymalizacji wielokryterialnej, co stanowi poprawę o 33% w stosunku do najlepszego rozwiązania problemu uzyskanego w modelu jednokryterialnym. Potwierdziło się zatem przypuszczenie, że wprowadzenie dodatkowego kryterium pomocniczego pomoże w poszukiwaniu lepszych rozwiązań.
Wydawca

Rocznik
Strony
5-25
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Politechnika Śląska, Instytut Informatyki, 44-100 Gliwice, ul. Akademicka 2A
Bibliografia
  • 1. Pawlak Z.: Rough sets - theoretical aspects of reasoning about data. Dordrecht: Kluwer Academic Publishers, 1991.
  • 2. Mrózek A.: Rough sets in computer implementation of rule-based control of industrial processes. [In:] Słowiński R. (editor): Intelligent decision support handbook of applications and advances of the rough sets. Dordrecht: Kluwer Academic Publishers, 1992. pp 19-31.
  • 3. Mrózek A.: A new method for discovering rules from examples in expert systems. Man-Machine Studies, 1992, 36: 127-143.
  • 4. Järvinen J.: Approximations and roughs sets based on tolerances. Lecture Notes in Artificial Intelligence, 2001, 2005: 182-189.
  • 5. Skowron A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae, 1996,27: 245-253.
  • 6. Doherty P., Szałas A.: On the correspondence between approximations and similarity. Lecture Notes in Artificial Intelligence, 2004, 3066: 143-152.
  • 7. Słowiński R., Vanderpooten D.: Similarity relation as a basis for rough approximations. [In:] Wang P.P. (editor): Advances in machine intelligence and soft computing. Raleigh: Bookwrights, 1997, pp 17-33.
  • 8. Słowiński R., Vanderpooten D.: A generalized definition of rough approximations based on similarity. IEEE Transaction on Data and Knowledge Engineering, 2000, 12 (2): 331-336.
  • 9. Gomolińska A.: A comparative study of some generalized rough approximations. Fundamenta Informaticae, 2002, 51 (1): 103-119.
  • 10. Grzymała-Busse J.W.: Rough set strategies to data with missing attribute values. Proceedings of the Workshop on Foundations and New Directions in Data Mining, associated with the third IEEE International Conference on Data Mining, Melbourne, FL, USA, November 19-22, 2003, 56-63.
  • 11. Grzymała-Busse J.W.: Data with missing attribute values: Generalization of indiscernibility relation and rule induction. Lecture Notes in Computer Science, 2004, 3100: 78-95.
  • 12. Ziarko W.: Variable precision rough set model. J Comp Sys Sci, 1993,40: 39-59.
  • 13. Mait J.N., Athale R., van der Gracht J.: Evolutionary paths in imaging and recent trends. Optics Express, 2003, II (18): 2093-2101.
  • 14. Casasent D., Song J.: A computer generated hologram for diffraction-pattern sampling. Proc SPIE, 1985, 523: 227-236.
  • 15. George N., Wang S.: Neural networks applied to diffraction-pattern sampling. Appl Opt, 1994, 33: 3127-3134.
  • 16. Cyran K.A., Niedziela T., Jaroszewicz L.R.: Grating-based DOVDs in high-speed semantic pattern recognition. Holography, 2001, 12 (2): 10-12.
  • 17. Cyran K.A., Mrózek A.: Rough sets in hybrid methods for pattern recognition. Int J Intell Sys, 2001, 16: 149168.
  • 18. Jaroszewicz, L.R., Cyran, K.A., Podeszwa, T.: Optimized CGH-based pattern recognizer. Opt. Appl, 2000, 30: 317-333.
  • 19. Cyran K.A., Jaroszewicz L.R., Niedziela T.: Neural network based automatic diffraction pattern recognition. Opto-elect Rev, 2001, 9: 301-307.
  • 20. Cyran K.A., Stańczyk U., Jaroszewicz L.R.: Subsurface stress monitoring system based on holographic ring-wedge detector and neural network. [In:] McNulty G.J. (editor): Quality, Reliability and Maintenance. Bury St Edmunds London, Professional Engineering Publishing, 2002, pp 65-68.
  • 21. Cyran K.A., Niedziela T., Jaroszewicz L.R., Podeszwa T.: Neural classifiers in diffraction image processing. Proc Int. Conf Comp Vision Graph., Zakopane, Poland, 2002, 223228.
  • 22. Podeszwa T., Jaroszewicz L.R., Cyran K.A.: Fiberscope based engine condition monitoring system. Proc SPIE, 2003, 5124: 299-303.
  • 23. Jaroszewicz L.R., Merta 1., Podeszwa T., Cyran K.A.: Airplane engine condition monitoring system based on artificial neural network. [In:] McNulty G.J. (editor): Quality, Reliability and Maintenance. Bury St Edmunds London, Professional Engineering Publishing, 2002, pp 179-182.
  • 24. Ganotra D., Joseph J., Singh K.: Modified geometry of ring-wedge detector for sampling Fourier transform of fingerprints for classification using neural networks. Proc SPIE, 2003, 4829: 407-408.
  • 25. Berfanger D.M., George N.: All-digital ring-wedge detector applied to fingerprint recognition. App Opt, 1999, 38 (2): 357-369.
  • 26. Ganotra D., Joseph J., Singh K.: Neural network based face recognition by using diffraction pattern sampling with a digital ring-wedge detector. Opt Comm, 2002, 202: 61-68.
  • 27. Berfanger D.M., George N.: All-digital ring wedge detector applied to image quality assessment. App Opt, 2000, 39 (23): 4080-4097.
  • 28. Kaye P.H., Barton J.E., Hirst E., Clark J.M.: Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. App Opt, 2000, 39 (21): 3738-3745.
  • 29. Nebeker B.M., Hirleman E.D.: Light scattering by particles and defects on surfaces: semiconductor wafer inspector. Lecture Notes in Physics, 2000, 534: 237-257.
  • 30. Cyran K.A., Jaroszewicz L.R.: Concurrent signal processing in optimized hybrid CGH-ANN system. Opt. Appl, 2001, 31: 681-689.
  • 31. Fares A., Bouzid A., Hamdi M.: Rotation invariance using diffraction pattern sampling in optical pattern recognition. J of Microwaves and Optoelect, 2000, 2 (2): 33-39.
  • 32. Cyran K.A., Jaroszewicz L.R.: Rough' set based classification of interferometric images. [In:] Jacquot P., Fournier J.M. (editors): Interferometry in Speckle Light. Theory and Applications. Berlin, Heidelberg, New York: Springer, 2000, pp 413-420
  • 33. Cyran K.A.: PLD-based rough classifier of Fraunhofer diffraction pattern. Proc Int Conf Comp Comm Contr Tech, Orlando, 2003, 163-168.
  • 34. Cyran K.A.: Integration of classifiers working in discrete and real valued feature space applied in two-way opto-electronic image recognition system. Proc. of the fifth IASTED International Conference on Visualization, Imaging, and Image Processing (VIIP 2005), Benidorm, Spain, 2005, 592-597.
  • 35. Cyran K.A., Niedziela T.: Automatic recognition of the type of road vehicles with the use of optimized ring-wedge detector and neural network. Archiwum Transportu, XVIII, 3, 2006, 23-36.
  • 36. Cyran K.A., Niedziela T.: Infrared images in automatic recognition of the type of road obstacle in a fog. Archiwum Transportu, XVIII, 4, 2006, 29-38.
  • 37. Skowron A., Grzymała-Busse J.W.: From rough set theory to evidence theory. [In:] Yager R.R., Ferdizzi M., Kacprzyk J. (editors): Advances in Dempster Shafer theory of evidence. NY: Wiley & Sons, 1994, pp 193-236.
  • 38. Cyran K.A., Niedziela T.: Optoelektroniczna metoda rozpoznawania obrazów pojazdów mechanicznych w dziedzinie częstości przestrzennych. Archiwum Transportu (w druku).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0031-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.