Warianty tytułu
Języki publikacji
Abstrakty
Gene arrays measure expression levels for thousands of genes simultaneously, providing a powerful tool for both basic research and clinical medicine. The aim of this paper was to present an optimal approach to preprocessing data from cancer microarray studies. The performance of different statistical methods used for the tumor classification was also compared. These methods include: the Bayes classifier, Fisher's classifier, minimum Euclidean and Mahalanobis distance classifiers and K-nearest neighbours classifier. The preprocessing algorithms and classification methods were applied to three datasets used for diagnosis of lymphoma, leukemia and lung cancer.
Czasopismo
Rocznik
Tom
Strony
37-57
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Institute of Radioelectronics, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warszawa, Poland, trubel@ire.pw.edu.pl
autor
- Institute of Radioelectronics, Warsaw University of Technology, Poland
autor
- Institute of Radioelectronics, Warsaw University of Technology, Poland
Bibliografia
- 1] Alizadeh A.A.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403, 503-511.
- [2] Golub T.R.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999, 286, 531-537.
- [3] Bhattacharjee A.: Classification of human hung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. 2001, 98, 13790-13795.
- [4] Schadt E., Li C., Su C., Wong W. H.: Analyzing high-density oligonucleotide gene expression array data. Journal of Cellular Biochemistry 2001, 80, 192-202.
- [5] Lipshutz R.J., Fodor S.P., Gingeras T.R., Lockhart D.J.: High density synthetic oligonucleotide arrays. Nature Genetics 1999, 21, 20-24.
- [6] Troyanskaya O., Cantor M. Sherlock, G. Brown, P. Hastie, T. Tibshirani, R. Botstein, D. Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 2001, 17, 520-525.
- [7] Ahrens H., Läuter J.: Multivariate Analysis of Variance. Wydawnictwo Naukowe PWN, Warszawa 1979, (in Polish).
- [8] Skarbek W.: Multimedia - Algorithms and Standards for Compression. Akademicka Oficyna Wydawnicza PLJ, Warszawa 1998, (in Polish).
- [9] Cohen A.: Biomedical signal processing Volume 2 - Compression and automatic recognition. CRC Press, Boca Raton, 1986.
- [10] Alter O., Brown P.O., Botstein D.: Processing and modeling genome-wide expression data using singular value decomposition. Microarrays: Optical Technologies and Informatics 2001, 4266, 171-186.
- [11] Berrar D.P., Dubitzky W., Granzow M.: A practical approach to microarray data analysis. Kluwer Academic Publishers, Boston 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0008-0017