Czasopismo
2009
|
Vol. 14, no 3
|
865-877
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Axially symmetric vibrations of a finite composite poroelastic circular cylinder are investigated employing Biot's theory of wave propagation in poroelastic media. The composite poroelastic cylinder consists of two poroelastic cylinders of different materials bonded at the plane ends. Frequency equations for such vibrations are derived both for pervious and impervious surfaces. Let the finite composite poroelastic cylinder be homogeneous and isotropic and the boundaries free from stress. Non-dimensional phase velocity for propagating modes is computed as a function of ratio of length of cylinders in the absence of dissipation. The results are presented graphically for two types of composite poroelastic cylinders and then discussed. In general, the phase velocity of composite cylinder-I is higher than that of composite cylinder-II both for a pervious and an impervious surface.
Rocznik
Tom
Strony
865-877
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
autor
- Deccan College of Engineering and Technology Hyderabad-500 001 (A.P) INDIA, ahmed_shah67@yahoo.com
Bibliografia
- Abousleiman Y. and Cui L. (1998): Poroelastic solutions in transversely isotropic media for wellbore cylinders. - Int. Journal of Solids and Structures, vol.35, pp.4905-4929.
- Ahmed Shah S. (2008): Axially symmetric vibrations of fluid-filled poroelastic circular cylindrical shells. - Journal of Sound and Vibration, vol.318, pp.389-405.
- Biot M.A. (1956): Theory of propagation of elastic waves in fluid-saturated porous solid. - J. Acoust. Soc. Am., vol.28, pp.168-178.
- Cui L., Cheng A.H-D. and Abousleiman Y. (1997): Poroelastic solutions of an inclined borehole. - Trans. ASME, J. Appl. Mech., vol.64, pp.32-38.
- Farhang H., Esmaeil E., Anthony N.S. and Mirnezami A. (2007): Wave propagation in transversely isotropic cylinders. - Int. Journal of Solids and Structures, vol.44, pp.5236-5246.
- Fatt I. (1959): The Biot-Willis elastic coefficients for a sandstone. - J. Appl. Mech., vol.26, pp.296-297.
- Gardner G.H.F. (1962): Extensional waves in fluid saturated porous cylinders. - J. Acoust. Soc. Am., vol.34, pp.36-40.
- Gazis D.C. (1959): Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical foundation, II. Numerical results. - J. Acoust. Soc. Am., vol.31, pp.568-578.
- Malla Reddy P. and Tajuddin M. (2000): Exact analysis of the plane-strain vibrations ofthick-walled hollow poroelastic cylinders. - Int. Journal of Solids and Structures, vol.37, pp.3439-3456.
- Ram Kumar (1964): Axially symmetric vibrations of a finite isotropic cylinder. - J. Acoust. Soc. Am., vol.38, pp.851-854.
- Tajuddin M. and Sarma K.S. (1978): Torsional vibrations of finite hollow poroelastic circular cylinders. - Def. Sci. Jn., vol.28, pp.97-102.
- Tajuddin M. and Sarma K.S. (1980): Torsional vibrations of poroelastic cylinders. - Trans. ASME, J. Appl. Mech., vol.47, pp.214-216.
- Tajuddin M. (1982): Torsional vibrations of finite composite poroelastic cylinders. - Indian J. Pure and Appl. Maths., vol.13, pp.375-381.
- Tajuddin M. and Ahmed Shah S. (2006): Circumferential waves of infinite hollow poroelastic cylinders. - Trans. ASME, J. Appl. Mech., vol.73, pp.705-708.
- Tajuddin M. and Ahmed Shah S. (2007): On torsional vibrations of infinite hollow poroelastic cylinders. - Journal of Mechanics of Materials and Structures, vol.2, pp.189-200.
- Wisse C.J., Smeulders D.M.J., van Dongen M.E.H. and Chao G. (2002): Guided wave modes in porous cylinders: Experimental results. - J. Acoust. Soc. Am., vol.112, pp.890-895.
- Wisse C.J., Smeulders D.M.J., Chao G. and van Dongen M.E.H. (2007): Guided wave modes in porous cylinders: Theory. - J. Acoust. Soc. Am., vol.122, pp.2049-2056.
- Yew C.H. and Jogi P.N. (1976): Study of wave motions in fluid-saturated porous rocks. - J. Acoust. Soc. Am., vol.60, pp.2-8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0041-0035