Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 12, no 2 | 337-351
Tytuł artykułu

Non-isothermal hydromagnetic convection in a porous medium with heat sink: hypergeometric function solutions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper deals with the free convection laminar boundary layer flow and heat transfer of an incompressible, electrically conducting, viscous fluid through a porous medium caused by stretching a porous wall in the presence of a heat source and under the influence of uniform magnetic field. Exact solutions of the basic equations of momentu m and energy ar e obtained after reducing them i n to non-linear ordinary differential equations and using confluent hypergeometric functions. The variations in the velocity field and temperature distribution with the Prandtl number (Pr), hydromagnetic parameter (M), permeability param eter (K), suction parameter (N), wall temperature parameler (S), and the heat sink parameter (Q) are obtained and depicted graphically. The skin-friction at the wall is also derived, and the numerical values for various physical parameters are also tabulaled. Magnetic field (M) is seen to reduce both longitudinal and translational velocities and also lower temperalures, aiding in controlling momentum and heat transfer during materiaIs processing. Suction (N) posivitely influences the transverse velocity but depresses the longitudinal velocity magnitudes as we II as decreasing tempcratures. Suction therefore also assists in controlling heat transfer in Ihe boundary layer. Increasing permeability parameter (K) depresses the longitudinal velocity but elevates transverse velocities and increases the skin friction at the wall. Both rising temperature (non-isothermal wall) parameter (S) and heat sink parameter (Q) decrease temperature values. The model finds applications in nucIear engineering control systems and MHD energy systems.
Wydawca

Rocznik
Strony
337-351
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
autor
autor
autor
  • Leeds College of Building/Leeds Metropolitan University North Street, Leeds, LS2 7QT, Engla, OBeg@lcb.ac.uk
Bibliografia
  • Beavers G.S. and Joseph D.D. (1967): Boundary conditions at a naturally permeable wall. - J. Fluid Mechanics, vol.30, pp.192-203.
  • Bég O.A., Takhar H.S. and Bhargava R. (2006): Finite element modeling of micropolar heat, momentum and species transfer over a perforated stretching sheet. - In preparation for June.
  • Bég O.A., Takhar H.S., Prasad V. and Soundalgekar V.M. (1998): Thermo-convective flow in a saturated, homogenous, isotropic porous medium using Brinkman's viscous model: numerical study. - Int. J. Numerical Methods in Heat and Fluid Flow, vol.8, pp.59-89.
  • Bhargava R., Kumar L. and Takhar H.S. (2003): Mixed convection from a continuous surface in a parallel moving stream of a micropolar fluid. - Heat and Mass Transfer, vol.39, pp.407-413.
  • Borkakati A.K. and Bharali A. (1983): Hydromagnetic flow and heat transfer between two horizontal plates, the lower plate being a stretching sheet. - Quart. Appl. Math., XL: pp.461-473.
  • Chauhan D.S. and Jakhar P.K. (1999): Non-Newtonian flow in the presence of a naturally permeable boundary. - Ind. J. Theo. Phys., vol.47, pp.303-311.
  • Cheng P. (1982): Mixed convection about a horizontal cylinder and a sphere in a fluid saturated porous medium. - Int. J. Heat and Mass Transfer, vol.25, pp.1245-1247.
  • Cheng P. and Chang I.D. (1976): On buoyancy induced flows in a saturated porous medium adjacent to impermeable horizontal surfaces. - Int. J. Heat and Mass Transfer, vol.19, pp.1267-1272.
  • Chiam T.C. (1982): Micropolar fluid flow over a stretching sheet. - Journal of Applied Mathematics and Mechanics (ZAMM), vol.62, pp.565-568.
  • Cramer K.R. and Pai S-I. (1973): Magnetofluid Dynamics for Engineers and Applied Physicists. - New York: McGraw-Hill.
  • Darcy H.P.G. (1856): Les Fontaines Publique de la Ville De Dijon. - Victor Dalmont, Paris.
  • Gebhart B., Jaluria Y., Mahajan R.L. and Sammakia B. (1988): Buoyancy-Induced Flows and Transport. - Reference Edition, Hemisphere, USA.
  • Haajizadeh M., Ozguc A.F. and Tien C.L. (1984): Natural convection in a vertical porous enclosure with internal heat generation. - Int. J. Heat and Mass Transfer, vol.27, pp.1893-1902.
  • Happel J. and Brenner H. (1965): Low Reynolds Number Hydrodynamics. - New Jersey: Prentice-Hall.
  • Hassanien I.A. and Gorla R.S.R. (1990): Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing. - Acta Mechanica, vol.84, pp.191-199.
  • Hong J.T. and Tien C.L. (1987): Analysis of thermal dispersion effect on vertical plate natural convection in porous media. - Int. J. Heat and Mass Transfer, vol.30, pp.143-150.
  • Idress M.K. and Abel M.S. (1996): Viscoelastic flow past a stretching sheet in porous media and heat transfer with internal heat source. - Ind. J. Theo. Phys., vol.44, pp.233-244.
  • McCormack P.D. and Crane L.J. (1973): Physical Fluid Dynamics. - New York: Academic Press.
  • Ni J., Beckermann C. and Smith T.F. (1993): Effects of electromagnetic field on natural convection in porous media. - 29th National Heat Transfer Conference- Fundamentals of Heat Transfer in Electromagnetic, Electrostatic and Acoustic Fields, ASME-HTD, 248, Georgia Institute of Technology, Atlanta, Georgia, USA.
  • Poots G. (1961): Laminar natural convection flow in magneto-hydrodynamics. - Int. J. Heat and Mass Transfer, vol.3, pp.1-25.
  • Pop I., Takhar H.S. and Soundalgekar V.M. (1982): Combined Convection Heat Transfer from an isothermal cylinder with internal sinks or sources. - Revue Romanie Mechanique Appliquee, vol.27, pp.214-218.
  • Ram P.C. (1989): Heat and Mass Transfer in MHD generating flow through a porous medium in a rotating fluid. - Astrophysics and Space Science, vol.172, pp.273-277.
  • Ram P.C. and Takhar H.S. (1994): Hall effects on oscillatory MHD free convective flow through a porous medium. - Encyclopedia of Fluid Mechanics, Supplement 3, Advances in Flow Dynamics, Editor: N. P. Cheremisinoff, Chapter 16, pp.251-258.
  • Rossow V.J. (1958): On flow of electrically-conducting fluids over a flat plate in the presence of a transverse magnetic field. - NACA Report, p.1358.
  • Sakiadis B.C. (1967): Boundary layer behaviour on continuous solid surfaces: II. The boundary layer on a continuous flat surface. - A. I. Ch. E. Journal, vol.7, pp.221-232.
  • Sanyal D.C. and Dasgupta S. (2003): Steady flow and heat transfer of a conducting fluid caused by stretching a porous wall. - Ind. J. Theo. Phys., vol.51, pp.47-58.
  • Schlichting H. (1979): Boundary-Layer Theory. - 6th Edition, McGraw-Hill, USA.
  • Surma-Devi C.D., Takhar H.S. and Nath G. (1986): Unsteady three-dimensional boundary layer flow due to a stretching sheet. - Int. J. Heat and Mass Transfer, vol.29, pp.1996-1999.
  • Takhar H.S. and Soundalgekar V.M. (1985): Flow and heat transfer of a micropolar fluid past a continuously moving porous plate. - Int. J. Eng. Sci., vol.23, pp.201-209.
  • Wang C.Y. (1984): The three-dimensional flow due to stretching flat surface. - Phys. Fluids, vol.27, pp.1915-1921.
  • Takhar H.S. and Gorla R.S.R. (1991): Unsteady mixed convection boundary layer flow of a micropolar fluid near the lower stagnation point on a cylinder. - Int. J. Eng. Fluid Mech., vol.4, pp.337-351.
  • Takhar H.S., Agarwal R.S., Bhargava R. and Jain S. (1998): Mixed convection flow of a micropolar fluid over a stretching sheet. - Heat and Mass Transfer, vol.34, pp.213-219.
  • Takhar H.S., Pop I. and Soundalgekar V.M. (1983): Dispersion of a soluble matter in a porous medium channel with homogenous and heterogenous chemical reaction. - Revue Romanie Mechanique Appliquee, vol.28, pp.127-132.
  • Takhar H.S. and Pop I. (1987): Free convection from a vertical plate to a thermally-stratified Darcian flow. - Mechanics Research Communications, vol.14, pp.81-86.
  • Takhar H.S. and Bég O.A. (1997): Effects of transverse magnetic field, Prandtl number and Reynolds number on non-Darcy mixed convective flow of an incompressible viscous fluid past a porous vertical flat plate in a saturated porous medium. - Int. J. Energy Research, vol.21, pp.87-100.
  • Takhar H.S., Surma Devi C.D. and Nath G. (1986): Heat and mass transfer for a point sink in a plane with a magnetic field. - Mechanics Research Communications, vol.13, pp.71-78.
  • Takhar H.S., Surma Devi C.D. and Nath G. (1986): MHD flow with heat and mass transfer due to a point sink. - Indian J. Pure and Applied Mathematics, pp.1242-1247.
  • Vafai K. and Tien C.L. (1981): Boundary and Inertia effects on flow and heat transfer in porous media. - Int. J. Heat and Mass Transfer, vol.24, pp.195-203.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0031-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.