Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 11, no 4 | 881-900
Tytuł artykułu

Free transverse vibrations of monoclinic rectangular plates with continuously varying thickness and density

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Free transverse vibrations of a rectangular plate composed of a monoclinic elastic material are discussed. The plate is considered to be exponentially varying in density and thickness along one direction of the plate. Hamilton's principle is used to derive the equation of motion and its solution is obtained using Chebyshev collocation technique. Frequency equations are derived for three boundary value problems when two edges of the plate are simply supported and the other two have different possibilities, namely (i) C - S - C - S (ii) C - S - S - S (iii) C - S - F - S, where C, S and F denote the clamped, simply supported and free edge respectively. Effects of thickness and density variation on modes of vibrations have been analyzed. Numerical computations have been performed for a specific model of monoclinic plates and the results obtained are compared with those for orthotropic plates already given in Lal (2003).
Wydawca

Rocznik
Strony
881-900
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
autor
  • Department of Mathematics Chitkara Institute of Engineering and Technology Jansla, Rajpura -140 401, Punjab, INDIA, sktomar@yahoo.com
Bibliografia
  • Appl F.C. and Byers N.R. (1965): Fundamental frequency of simply supported rectangular plates of linear varying thickness. - J. Appl. Mech., vol.32, No.1, pp.163-167.
  • Bespalova E.I. and Kitaigorodskii A.B. (2001): Features of the free planer vibrations of orthotropic rectangular plates. - Int. Applied Mech., vol.37, No.11, pp.1487-1491.
  • Bhat R.B. (1991): Vibration of rectangular plates on point and line support using charateristic orthogonal polynomials in the Rayleigh - Ritz method. - J. Sound and Vib., vol.149, No.1, pp.170-172.
  • Bhat R.B., Laura P.A.A., Gutierrez R.G., Cortinez V.H. and Sanzi H.C. (1990): Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness. - J. Sound and Vib., vol.138, No.2, pp.205-219.
  • Biswas P. (1978): Large deflection of heated orthotropic plates. - Indian J. Pure Appl. Math., vol.9, No.10, pp.1027-1032.
  • De S. (1981): Vibrations of monoclinic crystal plates. - Acta Geophysica Polonica, vol.29, No.3, pp.197-206.
  • Fox L. (1957): The Numerical Solutions of Two-point Boundary Value Problems. - Oxford University Press.
  • Fox L. and Parker I.B. (1968): Chebyshev Polynomials in Numerical Analysis. - Oxford University Press.
  • Gorman D.J. (1982): Free Vibration Analysis of Rectangular Plates. - Elsevier, North Holland, Amsterdam.
  • Grossi R.O. and Bhat R.B. (1995): Natural frequencies of edge restrained tapered rectangular plates. - J. Sound and Vib., vol.185, No.2, pp.335-343.
  • Haussuhl V.S. (1965): Elastische und Thermoelastische Eigenschaften CaSO4.2H2O (Gips). - Zeitsehrift fur Kristallographite, Bd 122, pp.311-314.
  • Hui WU and Huan-ran YU (2001): Natural frequency for rectangular orthotropic corrugated core sandwich plates with all edges simply supported. - Applied Mathematics and Mechanics, vol.22, No.9, pp.1019-1027.
  • Jain R.K. and Soni S.R. (1973): Free vibrations of rectangular plates of parabolically varying thickness. - Indian J. Pure Appl. Math., vol.4, No.3, pp.267-277.
  • Lal R. (2003): Transverse vibrations of orthotropic non-uniform rectangular plates with continuously varying density. - Indian J. Pure Appl. Math., vol.34, No.4, pp.587-606.
  • Lal R., Gupta U.S. and Rastogi S. (1996): Chebyshev polynomials in the study of vibrations of non-uniform rectangular plates. - Indian J. Pure Appl. Math., vol.27, No.10, pp.1017-1028.
  • Leissa A.W. (1969): Vibration of Plates. - National Aeronautical and Space Administration, Washington, D.C..
  • Leissa A.W. (1973): The free vibrations of rectangular plates. - J. Sound Vib., vol.31, pp.257-293.
  • Ng S.F. and Araar Y. (1989): Free vibration and buckling analysis of clamped rectangular plates of variable thickness by the Galerkin method. - J. Sound and Vib., vol.135, No.2, pp.263-274.
  • Rajalingham C., Bhat R.B. and Xistris G.D. (1996): Vibration of rectangular plates using plate characteristic functions as shape functions in Rayleigh - Ritz method. - J. Sound and Vib., vol.193, No.2, pp.497-509.
  • Rajalingham C., Bhat R.B. and Xistris G.D. (1997): Vibration of rectangular plates by reduction of partial differential equation into simultaneous ordinary differential equations. - J. Sound and Vib., vol.203, No.1, pp.168-180.
  • Sakata T., Takashahi K. and Bhat R.B. (1996): Natural frequencies of orthotropic rectangular plates by iterative reduction of the partial differential equation. - J. Sound and Vib., vol.189, No.1, pp.89-101.
  • Sizlard R. (1974): Theory and Analysis of Plates. - Prentice-Hall Inc., Englewood Cliffs, NJ.
  • Snyder M.A. (1969): Chebyshev Methods in Numerical Approximations. - Prentice Hall Inc., Englewood Cliffs, NJ.
  • Sonzogni VE., Idelsohn S.R., Laura P.A.A. and Cortinez V.H. (1990): Free vibrations of rectangular plates of exponentially varying thickness and with free edge. - J. Sound and Vib., vol.140, No.3, pp.513-522.
  • Taylor R.L. and Govindjee S. (2002/9): Solution of Clamped Rectangular Plate Problems. - Technical Report: UCB/SEMM-2002/09.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0023-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.