Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 9, no 4 | 749-769
Tytuł artykułu

Plane harmonic waves in transversely isotropic piezothermoelastic materials

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to study the propagation of plane harmonic waves in homogeneous, piezothermoelastic materials having hexagonal symmetry. After deriving the secular equation, it is found that four dispersive modes are possible. The low and high frequency approximations for the propagation speeds and attenuation coefficients have been obtained for quasi-longitudinal (QL), quasi-transverse (QT), and quasi-thermal (T-mode) by using the theory of algebraic functions. The limiting cases of the frequency equation have also been discussed in addition to the paths of particles during the motion. The paths of particles during the motion have been found to be elliptic, in general. The velocities and attenuation coefficients for various waves have been computed numerically for cadmium selenide material (6mm class) having hexagonal symmetry and are represented graphically. The inclinations of major axes of the paths of particles of QL and QT waves during the motion with wave normal have also been computed and represented graphically with respect to frequency.
Wydawca

Rocznik
Strony
749-769
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
  • Department of Applied Sciences, National Institute of Technology Hamirpur (HP) - 177 005, INDIA, jns@recham.ernet.in
autor
  • Department of Applied Sciences, National Institute of Technology Hamirpur (HP) - 177 005, INDIA
Bibliografia
  • [1] Ahlfors L.V. (1966): Complex Analysis. - McGraw-Hill Kogakusha Ltd., 2nd Eds.
  • [2] Ashida A., Tauchert T.R. and Noda N. (1993): Response of a piezoelectric plate of a crystal class 6mm subject to axi-symmetric heating. - Internat. J. Engng. Sci., vol.31, pp.373-384.
  • [3] Bernicourt D., Saffe H. and Shiozawa L.R. (1963): Electroelastic properties of the sulphides, selenides and Tellarides of Zinc and Cadmium. - Phys. Rev., vol.129, pp.1009-1017.
  • [4] Chadwick P. (1979): Basic properties of plane harmonic waves in pre-stressed heat conducting elastic materials. - J. Thermal Stresses, vol.2, pp. 193-214.
  • [5] Chandrasekhariah D.S. (1984): A temperature rate dependent theory of piezoelectricity. - J. Thermal Stresses, vol.7, pp.293-306.
  • [6] Chandrasekhariah D.S. (1988): A generalized linear thermoelasticity theory of piezoelectric media. - Acta Mechanica, vol.71, pp.39-49.
  • [7] Karunasena W., Liew K.M. and Kitipornchai S. (1995): Reflection of plate waves at the fixed edge of composite plate. - J. Acoust. Soc. Am., vol.98, pp.644-651.
  • [8] Karunasena W., Liew K.M. and Kitipornchai S. (1995): Hybrid analysis of reflection by a crack at the fixed edge of a composite plate. - Computer Meth. Appl. Mech. Engrg., vol. 125, pp.221-233.
  • [9] Liu T., Kitipornchai S. and Liew K.M. (1998): Acousto-ultrasonic characteristics for contact type transducers coupled to Timoshenko beam. - AIAAJ, vol.36, pp.638-644.
  • [10] Liu T., Kitipornchai S. and Liew K.M. (2000): Sensing characteristics of contact type transducers for flexural waves. - Int. J. Mechanical Sciences, vol.42, pp.147-162.
  • [11] Liu T., Kitipornchai S., Liew K.M. and Wang G. (1999a): Analysis of acousto-ultrasonic characteristics for contact type transducers coupled to an orthotropic composite plate. - J. Vib. Acoustic, vol.121, pp.460-467.
  • [12] Liu T., Liew K.M. Kitipornchai S. and Wang G. (1999b): Analysis of acousto-ultrasonic characteristics for an isotropic thin plate. - J. Acoust. Soc. Am., vol. 105, pp.3318-3325.
  • [13] Mayer A.P. (1990): Thermoelastic attenuation of surface acoustic waves. - Interval. J. Engng. Sci., vol.28, pp.1073-1082.
  • [14] Mindlin R.D. (1961): On the equations of motion of piezoelectric crystals. - Problems of Continuum Mechanics, N.I. Muskhelishvili, 70th Birthday Volume, SIAM Philadelphia, pp.282-290.
  • [15] Mindlin R.D. (1974): Equation of high frequency vibrations of thermo-piezoelectric plates. - Internat. J. Solids Struct., vol. 10, pp.625-637.
  • [16] Nowacki W. (1978): Some general theorems of thermo-piezoelectricity. - J. Thermal Stresses, vol.l, pp.171-182.
  • [17] Nowacki W. (1979): Fundations of linear piezoelectricity, In: Electromagnetic Interactions in Elastic Solids (H. Parkus, Ed.), -Wien: Springer-Verlag, Chap.l.
  • [18] Nowacki W. (1983): Mathematical modes of phenomenological piezoelectricity. - New Problems in Mechanics Continua, University of Waterloo Press, Waterloo, Ontario, pp.29-49.
  • [19] Pal A.K. (1979): Surface waves in a thermopiezoelectric medium of monoclinic symmetry. - Czeh. J. Phys., vol.29, pp.1271-1281.
  • [20] Paul H.S. and Raman G.V. (1991a): Wave propagation in a hollow pyroelectric circular cylinder of crystal class 6. - Acta Mechanica, vol.87, pp.37-46.
  • [21] Paul H.S. and Raman G.V. (1991b): Vibrations of pyroelectric plates. - J. Acoust. Soc. Amer., vol.90, pp.1729-1732.
  • [22] Paul H.S. and Ranganatham K. (1985): Free vibrations of a pyroelectric layer of hexagonal (6mm) class. - J. Acoust. Sci. Amer., vol.78, pp.395-397.
  • [23] Radzikowska E. (1981): Thermopiezoelectricity equation of plates. - Bull. Acad. Polonaise Sci. Ser. Sci. Techniques, vol.29, pp. 195-203.
  • [24] Sharma J.N. (1986): On the low and high frequency behaviour of generalized thermoelastic waves. - Arch. Mech., vol.38, pp.665-673.
  • [25] Singh H. and Sharma J.N. (1985): Generalized thermoelastic waves in transversely isotropic media. - J. Acoust. Soc. Am., vol.77, pp.1046-1053.
  • [26] Tang Y.X. and Xu K. (1995): Dynamic analysis of a piezo-thermoelastic laminated plate. - J. Thermal Stresses, vol.18, pp.87-104.
  • [27] Tauchert T.R. (1992): Piezothermoelastic behaviour of a laminated plate. - J. Thermal Stresses, vol. 15, pp.25-37.
  • [28] Yang J.S. and Batra R.C. (1995): Free vibrations of a linear thermo-piezoelectric body. - J. Thermal Stresses, vol.18, pp.247-262.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0007-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.