Czasopismo
2004
|
Vol. 9, no 3
|
455-470
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The method of multiple scales, a long standing alternative to the method of matched expansions, is applied to the nonlinear boundary value problem modelling the operation of a one-dimensional gas lubricated slider bearing, at large values of the bearing number. Approximate expansions for the pressure profile, load bearing capacity and the location of the centre of pressure are obtained, and compared with the results of applying matched expansions and numerical techniques.
Rocznik
Tom
Strony
455-470
Opis fizyczny
Bibliogr. 12 poz., wykr.
Twórcy
autor
- Applied and Numerical Modelling Group, Department of Mathematics Royal Melbourne Institute of Technology, Melbourne, 3000, AUSTRALIA
autor
- Applied and Numerical Modelling Group, Department of Mathematics Royal Melbourne Institute of Technology, Melbourne, 3000, AUSTRALIA, jshep@ems.rmit.edu.au
autor
- Applied and Numerical Modelling Group, Department of Mathematics Royal Melbourne Institute of Technology, Melbourne, 3000, AUSTRALIA
Bibliografia
- [1] Aliu E. (2000): Singular Perturbations in Gas Lubrication. - Ph.D. Thesis, RMIT University.
- [2] Burgdorfer A. (1959): The influence of the molecular mean free path on the performance of hydrody-namic gas lubńcated bearings. - J. Basic Eng., Trans. ASME, Series D, vol.81, No.l, pp.94-100.
- [3] DiPrima R.C. (1968): Asymptotic methods for an infinitely long slider squeeze-film bearing. - J. Lub. Tech., Trans. ASME, Series F, vol.90, No.l, pp.173-183.
- [4] DiPrima R.C. (1969): Higher order approximations in the asymptotic solution of the Reynolds eąuation for slider bearings at high bearing numbers. - J. Lub. Tech., Trans. ASME Series F, vol.91, No.l, pp.45-51.
- [5] Gross W. A. and Zachmanoglou E.C. (1961): Perturbation Solutions for gas-lubricating films. - J. Basic Eng., Trans. ASME, Series D, vol.83, No.l, pp.139-144.
- [6] Habets P. (1978): A singular boundary value problem in gas lubrication theory. - Seminaire de Mathematiąue Appliąuee et Mecaniąue, Report No. 19, Institut de Mathematiąue Pure et Appliąuee, Universite, Catholiąue du Louvain.
- [7] Nayfeh A.H. (1973): Perturbation Methods. - NewYork: John Wiley and Sons.
- [8] PDEase (1993): Finite Element Analysis for Partial Differential Eąuations. - Version 2.5 Reference Manuał, Macsyma Inc.
- [9] Sereny A. and Castelli V. (1978): Perturbation solution ofthe 1-D Reynolds eąuation with slip boundary conditions. - ASME J. Lub. Tech., vol.l00, pp.70-73.
- [10] Shepherd J.J. (1978): On the asymptotic solution ofthe Reynolds eąuation. - SIAM J. Appl. Math., vol.34, No.4, pp.774-791.
- [11] Steinmetz W.J. (1974): On a nonlinear singular perturbation boundary problem in gas lubrication theory. - SIAM J. Appl. Math., vol.26, No.4, pp.816-826.
- [12] White J.W. and Raad P.E. (1993): Effect of a rough translating surface on gas fdm lubrication: a numerical and analytical study. - J. Tribol., vol.l 15, pp.246-252.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0007-0028