Czasopismo
2003
|
Vol. 8, no 2
|
245-254
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A general first order shear deformation theory has been developed to analyze the bending behavior of isotropic skew plates. The plates having different skew angles ('alpha'), aspect ratios (a/b), boundary conditions and transverse loading conditions (concentrated load, uniformly distributed load, hydrostatic varying load and sinusoidal varying load) have been analyzed by the nine node isoparametric element. The analysis has also been performed considering plate thickness ratio varying from a/b=0.001 to a/b=0.02. The deflections and principal bending moments in non-dimensional forms have been presented at different locations of the plates. The present solutions have been compared with the published results wherever available and have got good agreement. Some numerical solutions have been given which may be treated as new results.
Rocznik
Tom
Strony
245-254
Opis fizyczny
Bibliogr. 13 poz., tab., wykr.
Twórcy
autor
- Department of Applied Mechanics Bengal Engineering College (Deemed University) Howrah - 711 103, INDIA, mcmbecdu@lycos.com
autor
- Department of Applied Mechanics Bengal Engineering College (Deemed University) Howrah - 711 103, INDIA
autor
- Department of Ocean Engineering and Naval Architecture Indian Institute of Technology Kharagpur - 721 302, INDIA
Bibliografia
- [1] Agarwal B.D. (1966): Bending of rhombic plates. - Quart. Journal. Mech. Appl. Math., vol. 19, pp.79-82.
- [2] Butalia T.S., Kant T. and Dixit V.D. (1990): Performance of Heterosis element for bending of skew rhombic plates. - Computers and Structures, vol.34, pp.23-49.
- [3] Liew K.M. and Wang C.W. (1993): Vibration studies on skew plates: Treatment of internal supports. - Computers and Structures, vol.49, No.6, pp.941-951.
- [4] Liew K.M. (1992): Response of plates of arbitrary shape subjected to static loading. - Journal Engg. Mech., ASCE, vol.118, No.9, pp.1783-1794.
- [5] Liew K.M. and Han J.B. (1997a): Bending analysis of simply supported shear deformable skew plates. - Journal Appl. Mech., ASCE, vol. 123, No.3, pp.214-221.
- [6] Liew K.M. and Han J.B. (1997b): A four-node differential quadrilateral Reissner/Mindlin plate. - Communications in Num. Meth. Engg., vol.13, No.2, pp.73-81.
- [7] Liew K.M. and Han J.B. (1997c): Bending analysis of simply supported shear deformable skew plates. - Journal Engg. Mech., ASCE, vol.123, No.3, pp.214-221.
- [8] Liew K.M. and Han J.B. (1998): Bending solution for thick plates with quadrangular boundary. - Journal Engg. Mech., ASCE, vol.124, No.l, pp.9-17.
- [9] Sengupta D. (1995): Performance study of a simple finite element in the analysis of skew rhombic plates. - Computers and Structures, vol.54, No.6, pp.l 173-1182.
- [10] Timoshenko S.P. and Woinowsky-Krieger S. (1970): Theory of Plates and Shells. - Singapore: McGraw-Hill, 2nd edition.
- [11] Wang C.W., Liew K.M. and Alwis W.A.M. (1992): Buckling of skew plates and corner condition for simply supported edges. - Journal Appl. Mech., ASCE, vol. 118, No.4, pp.651-662.
- [12] Zienkiewicz O.C. (1977): The Finite Element Method. - London: McGraw-Hill, 3rd Edition.
- [13] Zienkiewicz O.C. and Taylor R.L. (1988): The Finite Element Method (two volumes). - New York: McGraw-Hill.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ2-0005-0007